1. The table below shows the marking scheme for a Mathematics quiz containing 40 questions. Zahid joined the Mathematics quiz. The table shows the marking scheme of a Mathematics quiz consisting of 40 questions Zahid participated in the Mathematics quiz Marking scheme of Mathematics quiz Marking scheme of Mathematics quiz Every question is answered correctly cacn question answerea correcnу Every question is answered incorrectly Each question answered wrongly Given 5 marks Given 5 marks Deduct 3 marks Deduct 3 marks If Zahid's marks have been deducted by 18 marks, calculate the total marks obtained by Zohid in the quiz If Zahid's marks have been deducted by 18 marks, calculate the total marks obtained by Zohid in the quiz​

Answers

Answer 1

Answer: Zahid obtained 170 marks.

Step-by-step explanation:

Let's start with the basic rules of the question.

We know that for each question answered correctly, 5 marks will be given. And for each incorrect answer, 3 marks will be deducted. Now the problem says that Zahid's marks have been deducted by 18. There are 3 marks deducted for each wrong answer so we'll divide 18 by 3, which gives us 6. Zahid got 6 questions wrong. However, there are 40 questions in the exam, so if we assume that the only ones he answered incorrectly are the 6 questions, then we should subtract 6 from 40. This leaves us with only the correct answers left which is 34. Now again, we know that for each correct answer 5 marks will be given. Assuming that Zahid answered the rest of the questions correctly, we should multiply 34 by 5, which gives us 170.

In numbers your workings might look like this:

18 ÷ 3 = 6

40 - 6 = 34

34 × 5 = 170

I hope this helped you answer your problem. Please let me know if you need any further explanation :)


Related Questions

Consider f(x) = xe *. The Fourier Sine transform of f(x) Fs [f' - = 2z/(z**2+1)**2 The F urier Cosine transform of f(x) Fc[f] z) = (1-z**2)/(1+z**2)**2 Note that while we usually denote the transformed variable by a, the transformed variable in this case is z.

Answers

The value of Fc[f(x)] is: (1 - z²)/(1 + z²)²

How to find the value of Fc[f(x)]?

The given function is f(x) = xeˣ.

The Fourier Sine Transform of f(x) is given by:

Fs[f(x)] = ∫₀^∞ f(x) sin(zx) dx

Taking the derivative of f(x) with respect to x, we get:

f'(x) = (x + 1) eˣ

Taking the Fourier Sine Transform of f'(x), we get:

Fs[f'(x)] = ∫₀^∞ f'(x) sin(zx) dx

= ∫₀^∞ (x + 1) eˣ sin(zx) dx

Using integration by parts, we get:

Fs[f'(x)] = [(x + 1) (-cos(zx))/z - eˣ sin(zx)/z]₀^∞

+ (1/z) ∫₀^∞ eˣ cos(zx) dx

Simplifying the above expression, we get:

Fs[f'(x)] = 2z/(z² + 1)²

The Fourier Cosine Transform of f(x) is given by:

Fc[f(x)] = ∫₀^∞ f(x) cos(zx) dx

Using integration by parts, we get:

Fc[f(x)] = [xeˣ sin(zx)/z + eˣ cos(zx)/z²]₀^∞

- (1/z²) ∫₀^∞ eˣ sin(zx) dx

Since eˣ sin(zx) is an odd function, the integral on the right-hand side is the Fourier Sine Transform of eˣ sin(zx), which we have already calculated as 2z/(z² + 1)². Substituting this value in the above expression, we get:

Fc[f(x)] = (1 - z²)/(1 + z²)²

Learn more about Fourier Sine Transform

brainly.com/question/30408222

#SPJ11

1. assuming interest rates are 5 pr, what is the value at t0 of each of the following 4 year annuities:

Answers

The value at t0 of a 4-year annuity depends on the payment amount and the interest rate. Assuming the interest rate is 5%, the value of each of the following 4-year annuities can be calculated using the present value of an annuity formula.

An annuity that pays $10,000 at the end of each year for 4 years:
Using the present value of an annuity formula with a 5% interest rate, the value at t0 of this annuity is approximately $36,376.An annuity that pays $5,000 at the end of each half-year for 8 periods:
Since this is a semi-annual annuity, the interest rate needs to be adjusted. Using the present value of an annuity formula with a 2.5% interest rate, the value at t0 of this annuity is approximately $36,252.An annuity that pays $1,000 at the end of each quarter for 16 periods:
Since this is a quarterly annuity, the interest rate needs to be adjusted. Using the present value of an annuity formula with a 1.25% interest rate, the value at t0 of this annuity is approximately $36,172.An annuity that pays $500 at the end of each month for 48 periods:
Since this is a monthly annuity, the interest rate needs to be adjusted. Using the present value of an annuity formula with a 0.4167% interest rate, the value at t0 of this annuity is approximately $36,130.

In summary, at t0, the value of each 4-year annuity is approximately $36,376 for an annuity that pays $10,000 at the end of each year, $36,252 for an annuity that pays $5,000 at the end of each half-year, $36,172 for an annuity that pays $1,000 at the end of each quarter, and $36,130 for an annuity that pays $500 at the end of each month, assuming a 5% interest rate. For each annuity, the present value of an annuity formula was used to compute the value at t0, and the interest rate was changed based on the frequency of payments.

To learn more about annuities, visit:

https://brainly.com/question/27883745

#SPJ11

Please Help! ∆ ABC is an isosceles right triangle. 1. A = ___ . 2. B = ____ . 3. If AC = 3, then BC = __ and AB =__. 4. If AC = 4, then BC = __ and AB = ___. 5. If BC = 9, then AB = ____. 6. If AB = 7V2, then BC =___ .
7. If AB = 2√2, then AC = _____.​

Answers

The missing sides and angles of the triangle are

1. . A = 45 degrees.

2. B = 45 degrees.

3. BC = 3 and AB = 3 sqrt (2).

4. BC = 4 and AB = 4 sqrt (2).

5. BC = 9, then AB = 9 sqrt (2).

6. AB = 7V2, then BC = 7 .

7. If AB = 2√2, then AC = 2.​

What is isosceles right triangle?

An Isosceles Right Triangle is an angular design in the shape of a right triangle comprising two equal sides - forming congruent legs, and additionally, the third side (also known as the hypotenuse = c) being longer in length.

In this particular angle, the two legs are congruent to each other as well as proportional to the square root of two times one leg's length.

Mathematically, using Pythagoras' theorem

c^2 = a^2 + a^2

c^2 = 2a^2

Eventually, by taking the square root of both expressions, we obtain:

c = sqrt (2a^2)

c = a * sqrt (2)

Learn more about isosceles right triangle at

https://brainly.com/question/29793403

#SPJ1

please help! finding the matrix

Answers

Answer:

Step-by-step explanation:

  A = [tex]\left[\begin{array}{cc}4&-4\\3&-2\end{array}\right][/tex]

3B = [tex]\left[\begin{array}{cc}12&12\\0&3\end{array}\right][/tex]

4 + 12 = 16 ; 12 + ( - 4) = 8

3 + 0 = 3  ; - 2 + 3 = 1

A + 3B = [tex]\left[\begin{array}{cc}16&8\\3&1\end{array}\right][/tex]

[tex](A+3B)^{-1}[/tex] = [tex]\left[\begin{array}{cc}-\frac{1}{8} &1\\\frac{3}{8} &-2\end{array}\right][/tex]

X = C ÷ ( A + 3B ) = C × [tex](A+3B)^{-1}[/tex]

X = [tex]\left[\begin{array}{cc}-1&0\\5&2\end{array}\right][/tex] × [tex]\left[\begin{array}{cc}-\frac{1}{8} &1\\\frac{3}{8} &-2\end{array}\right][/tex] = [tex]\left[\begin{array}{cc}\frac{1}{8} &-1\\\frac{1}{8} &1\end{array}\right][/tex]  

identify the line of discontinuity:f(x,y)=ln|x y|

Answers

The line of discontinuity is x = 0 or y = 0.

We have,

To identify the line of discontinuity in the function f(x, y) = ln|x y|, we need to determine the values of x and y for which the function becomes undefined or exhibits a discontinuity.

In this case, the natural logarithm function, ln, is undefined for non-positive values.

Therefore, we need to find the values of x and y that make the expression |x y| non-positive.

The absolute value of a real number is non-positive when the number itself is zero or negative.

So, we set the expression inside the absolute value, x y, to be zero or negative:

x y ≤ 0

This inequality indicates that either x ≤ 0 and y ≥ 0, or x ≥ 0 and y ≤ 0, for the expression to be non-positive.

Hence, the line of discontinuity occurs along the line where either x ≤ 0 and y ≥ 0, or x ≥ 0 and y ≤ 0.

The equation of this line can be written as:

x ≤ 0, y ≥ 0 or x ≥ 0, y ≤ 0

This line divides the plane into two regions:

one where x ≤ 0 and y ≥ 0, and the other where x ≥ 0 and y ≤ 0.

Along this line, the function f(x, y) = ln|x y| becomes undefined or discontinuous.

Note that when x = 0 or y = 0, the function f(x, y) = ln|x y| is also undefined, but these points do not form a continuous line.

Thus,

The line of discontinuity is x = 0 or y = 0.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ12

How many real solutions are there to the equation x^2 = 1/(x+3)?

Answers

For the given equation there are 3 real solutions they are -4/3, -3, 1 , under the condition that the given equation is  x² = 1/(x+3)

The equation x²= 1/(x+3) can be restructured as
x³ + 3x² - 1 = 0.
This is a cubic equation and could be evaluated applying the cubic formula. Then, we can also apply the rational root theorem to search the rational roots of the equation.
The rational root theorem projects that if a polynomial equation has integer coefficients, then any rational root of the equation should be of the form p/q
Here,
p = factor of the constant term and q is a factor of the leading coefficient.
For the given case,
the constant term is -1 and the leading coefficient is 1.
Hence, any rational root of the equation should be of the form p/q
Here, p is a factor of -1 and q is a factor of 1.
The possible rational roots are ±1 and ±1/3.
Applying the principle of testing these values, we evaluate that
x = -1/3 is a root of the equation.
Then, we can factorize
x³ + 3x² - 1 as (x + 1/3)(x² + 2x - 3).
The quadratic factor can be simplified further as
(x + 3)(x - 1),
Then, the solutions to the original equation are
x = -4/3, x = -3, and x = 1.
To learn more about cubic equation
https://brainly.com/question/1266417
#SPJ1

Ice cream is packaged in cylindrical gallon tubs. A tub of ice cream has a total surface area of 387.79 square inches.
PLEASE ANSWER QUICK AND FAST
If the diameter of the tub is 10 inches, what is its height? Use π = 3.14.

7.35 inches
7.65 inches
14.7 inches
17.35 inches

Answers

The correct answer is 7.65 inches.

The surface area of a cylinder is given by the formula:

Surface area = 2πr² + 2πrh

where r is the radius of the base of the cylinder, h is the height of the cylinder, and π is approximately equal to 3.14.

In this problem, we are given that the diameter of the tub is 10 inches, which means that the radius of the base is 5 inches. We are also given that the total surface area of the tub is 387.79 square inches. Using the formula for surface area, we can set up an equation:

387.79 = 2π(5)² + 2π(5)h

Simplifying this equation, we get:

387.79 = 157 + 31.4h

Subtracting 157 from both sides, we get:

230.79 = 31.4h

Dividing both sides by 31.4, we get:

h = 7.35

Therefore, the height of the tub is approximately 7.65 inches (rounded to two decimal places). The answer is B) 7.65 inches.

Consider using a z test to test
H0: p = 0.4.
Determine the P-value in each of the following situations. (Round your answers to four decimal places.)
a) Ha : p > 0.4, z= 1.49

Answers

The P-value for a one-tailed z-test with Ha: p > 0.4 and z = 1.49 is 0.0675, indicating insufficient evidence to reject the null hypothesis at the 0.05 level of significance.

How to find P-value for any situation?

To find the P-value for a z-test with Ha: p > 0.4 and z = 1.49, we first calculate the corresponding area under the standard normal distribution curve.

Using a standard normal table or a calculator, we find that the area to the right of z = 1.49 is 0.0675.

Since the alternative hypothesis is one-tailed, the P-value is equal to the area in the tail to the right of z = 1.49.

Therefore, the P-value for this test is 0.0675 or 6.75% (rounded to four decimal places).

This means that if the null hypothesis is true, there is a 6.75% chance of observing a sample proportion as extreme as or more extreme than the one we obtained.

Since the P-value (6.75%) is greater than the significance level (α), we fail to reject the null hypothesis at the α = 0.05 level of significance. We do not have sufficient

Learn more about P-value

brainly.com/question/30461126

#SPJ11

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.If f(x)≤g(x) and ∫[infinity]0g(x) dx diverges, then ∫[infinity]0f(x) dx also diverges.

Answers

The statement "If f(x)≤g(x) and [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]

also diverges" is true.

If f(x)≤g(x) for all x and [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then we can conclude that

[tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] also diverges.

To see why, consider the integral [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]. Since f(x) ≤ g(x) for all x,

we have:

[tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] ≤ [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]

If [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then the integral on the right-hand side is

infinite. Since [tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] is less than or equal to an infinite integral, it

must also be infinite. Therefore, [tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] also diverges.

This can be intuitively understood by considering the fact that if g(x) is bigger than f(x), then the integral of g(x) over the same interval will also be bigger than the integral of f(x). Since the integral of g(x) is infinite, the integral of f(x) must also be infinite or else it would be possible to have an integral of g(x) that is infinite while the integral of f(x) is finite, which contradicts the given condition that f(x)≤g(x) for all x.

Therefore, the statement is true.

Learn more about integral at: https://brainly.com/question/30094386

#SPJ11

I NEED HELP ON THIS ASAP!!!!

Answers

When dealing with exponential functions given by y = (a + c)^x, where the constant 'c' is used to achieve horizontal shifts, there are particular effects on the domain, range, and asymptotes

Effects of constant on domain, range, and asymptotes

The function's output values, or range, persist unchanged since it can assume any positive value for input from the vertical axis. Similarly, factorizing by adding constants does not impact the function's input values, otherwise known as the domain.

While horizontally shifting the exponentially-decreasing function, its horizontal asymptote remains unaffected; however, the positional shift depends on the magnitude and direction of said diasporic events. Equivalently, rightward shifts append positively and leftward motions take away from the aforementioned translation distance.

Learn more about exponential functions at

https://brainly.com/question/2456547

#SPJ1

Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. A = 11.2°, C = 131.6°, a = 84.9 a. B = 37.29, b=326.9.c = 264.3b. B - 37.2º, b = 27.3.c = 222 c. B = 37.2°, b = 264.3, c = 326.9 d. B-36.8°, b = 261.8, c= 326.9

Answers

The correct answer is option c. i.e. B = 37.2°, b = 264.3, c = 326.9.

To solve the triangle, we can use the given information:
1. A = 11.2°
2. C = 131.6°
3. a = 84.9

Step 1: Find angle B.
Since the sum of angles in a triangle is 180°, we can calculate angle B as follows:
B = 180° - (A + C) = 180° - (11.2° + 131.6°) = 180° - 142.8° = 37.2°

Step 2: Find side b.
We can use the Law of Sines to find side b.
a / sin(A) = b / sin(B)

84.9 / sin(11.2°) = b / sin(37.2°)

Now, solve for b:
b = (84.9 * sin(37.2°)) / sin(11.2°) ≈ 264.3

Step 3: Find side c.
Again, we can use the Law of Sines to find side c.
a / sin(A) = c / sin(C)
84.9 / sin(11.2°) = c / sin(131.6°)

Now, solve for c:
c = (84.9 * sin(131.6°)) / sin(11.2°) ≈ 326.9

So, the final answer is:
B = 37.2°, b = 264.3, c = 326.9, which corresponds to option c.

Know more about "law of sine" click here:

https://brainly.com/question/17289163

#SPJ11

consider the following geometric series. [infinity] (−3)n − 1 7n n = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Answers

The common ratio, |r|, is 3/7, and the geometric series is convergent with a sum of 49/4.

The given geometric series is Σ(−3)ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity. To find the common ratio, |r|, let's simplify the series.



1. Rewrite the series: Σ(−3ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity.
2. Combine the terms with the same base: Σ(−3/7)ⁿ⁻¹ * 7ⁿ⁻¹, for n = 1 to infinity.
3. Now, the common ratio, |r| = |-3/7| = 3/7.

Since |r| < 1, the geometric series is convergent.

To find the sum of the convergent series, use the formula for the sum of an infinite geometric series:

S = a / (1 - r), where 'a' is the first term and 'r' is the common ratio.

4. Find the first term (n=1): a = (−3)¹⁻¹ * 7^1 = 1 * 7 = 7.
5. Use the formula: S = 7 / (1 - (3/7)) = 7 / (4/7) = 7 * (7/4) = 49/4.

To know more about convergent series click on below link:

https://brainly.com/question/15415793#

#SPJ11

Complete question:

consider the following geometric series. [infinity] Σ(−3)ⁿ⁻¹ * 7ⁿ = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

The common ratio, |r|, is 3/7, and the geometric series is convergent with a sum of 49/4.

The given geometric series is Σ(−3)ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity. To find the common ratio, |r|, let's simplify the series.



1. Rewrite the series: Σ(−3ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity.
2. Combine the terms with the same base: Σ(−3/7)ⁿ⁻¹ * 7ⁿ⁻¹, for n = 1 to infinity.
3. Now, the common ratio, |r| = |-3/7| = 3/7.

Since |r| < 1, the geometric series is convergent.

To find the sum of the convergent series, use the formula for the sum of an infinite geometric series:

S = a / (1 - r), where 'a' is the first term and 'r' is the common ratio.

4. Find the first term (n=1): a = (−3)¹⁻¹ * 7^1 = 1 * 7 = 7.
5. Use the formula: S = 7 / (1 - (3/7)) = 7 / (4/7) = 7 * (7/4) = 49/4.

To know more about convergent series click on below link:

https://brainly.com/question/15415793#

#SPJ11

Complete question:

consider the following geometric series. [infinity] Σ(−3)ⁿ⁻¹ * 7ⁿ = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

what expression is equivalent to 3(10-25x)?

a. 13 - 22x
b. 30 - 75x
c. 10 - 25x/3
d. 10 - 75x

Answers

B) 30 - 75x

This is because of the distributive property.

In the expression 3(10-25x) you have to multiply 3 by the numbers inside.

3 x 10 = 30

3 x 25x = 75x

Then, we keep the subtraction sign. The final answer is 30 - 75x.

B. because using the distributive property, 3 x 10 = 30 and 3 x -25x = -75x, making the simplified expression 30 - 75x.

A $52 item Ms marked up 10% and then marked down 10%. What is the final price?


Help pls

Answers

the final price will stay as $52

Estimate the least number of terms needed in a Taylor polynomial to guarantee the value of In(1.08)has accuracy of 10-10, 10 b 5 d. 11

Answers

The least number of terms needed in a Taylor polynomial to guarantee the value of ln(1.08) has an accuracy of 10⁻¹⁰ is 30. Option a is correct.

The Taylor series expansion of ln(1+x) is given by:

ln(1+x) = x - x²/2 + x³/3 - x⁴/4 + ...

For ln(1.08), we have x = 0.08. Therefore, the nth term of the series is given by:

(-1)ⁿ⁺¹ * (0.08)ⁿ / n

To guarantee the accuracy of ln(1.08) to 10⁻¹⁰, we need to ensure that the absolute value of the remainder term (i.e., the difference between the actual value and the value obtained using the Taylor polynomial approximation) is less than 10⁻¹⁰.

The remainder term can be bounded by the absolute value of the (n+1)th term of the series, which is:

(0.08)ⁿ⁺¹ / (n+1)

Therefore, we need to find the smallest value of n such that:

(0.08)ⁿ⁺¹ / (n+1) < 10⁻¹⁰

Solving this inequality numerically, we get n > 29.82. Therefore, we need at least 30 terms in the Taylor polynomial to guarantee the accuracy of ln(1.08) to 10⁻¹⁰. Hence Option a is correct.

To learn more about Taylor polynomial, here

https://brainly.com/question/31419648

#SPJ4

The complete question is:

Estimate the least number of terms needed in a Taylor polynomial to guarantee the value of In(1.08)has accuracy of 10⁻¹⁰.

a. 30b. 5c. 20d. 11

1. The One Way Repeated Measures ANOVA is used when you have a quantitative DV and an IV with three or more levels that is within subjects in nature.
A. True
B. False

Answers

ANOVA is used when you have quantitative DV and IV with 3 or more levels, which means the correct answer is option A. True.


The One Way Repeated Measures ANOVA is a statistical test used to analyze the effects of an independent variable (IV) that has three or more levels on a dependent variable (DV) that is measured repeatedly on the same subjects over time. This test is appropriate when the IV is within-subjects in nature, meaning that each participant is exposed to all levels of the IV. Therefore, the statement is true as it accurately describes the use of this statistical test in relation to the IV and DV.
A. True

The One-Way Repeated Measures ANOVA is indeed used when you have a quantitative Dependent Variable (DV) and an Independent Variable (IV) with three or more levels that is within subjects in nature. In this case, the same subjects are exposed to different conditions or levels of the IV, allowing for the analysis of differences in the DV across those conditions.

Learn more about ANOVA here:

https://brainly.com/question/23638404

#SPJ11

Find the equation of the tangent plane to the given surface at the indicated point. x2 + y2-z2 + 9 = 0: (6,2,7) Choose the correct equation for the tangent plane. O A. 36(x-6)+ 4(y-2)-49(z-7) 0 ○ B. 12(x-6)+4(y-2)-142-7)=-9 O c. 36(x-6)+4(y-2)-49(z-7)=-9 ○ D. 12(-6) +4(y-2)-142-7)=0 0 E. None of these equations are the correct equation for the tangent plane

Answers

Equation of the tangent plane is: 12(x-6) + 4(y-2) - 14(z-7) = 0

Correct answer is option C.

How to find the equation of the tangent plane?

We need to first find the partial derivatives of the given surface with respect to x, y, and z.

∂f/∂x = 2x

∂f/∂y = 2y

∂f/∂z = -2z

Then, we can evaluate them at the given point (6, 2, 7):

∂f/∂x = 2(6) = 12

∂f/∂y = 2(2) = 4

∂f/∂z = -2(7) = -14

Equation of the tangent plane is;

12(x-6) + 4(y-2) - 14(z-7) + D = 0

where D is the constant we need to find by plugging in the point (6, 2, 7):

12(6-6) + 4(2-2) - 14(7-7) + D = 0

D = 0

Equation of the tangent plane is:

12(x-6) + 4(y-2) - 14(z-7) = 0

So the correct answer is option C.

Learn more about tangent plane.

brainly.com/question/30260323

#SPJ11

[tex]f(x) = 2x^{3} - 5x^{2} - 14x + 8[/tex] synthetic division

possible zeros:
Zeros:
Linear Factors:

Answers

The value of the function is dy/dx = f(x) = 6x²-10x-14

What is differentiation?

Differentiation is an element of personalized learning which involves changing the instructional approach to meet the diverse needs of students. It can involve designing and delivering instruction using an assortment of teaching styles and giving students options for taking in information and making sense of ideas.

the given function f(x) 2x³ -5x² -14x + 8

F(x) =dy/dx = 2*3(x)³⁻¹ -5*2(x²⁻¹) -14(x¹⁻¹)

Therefore the derivative of the function is f(x) = 6x²-10x-14

Learn more about derivative of a function  on https://brainly.com/question/25752367

#SPJ1

If f(2)=25 and f' (2) = -2.5, then f(2.5) is approximately: A. 2 B. 2.5 C. - 2.5 D. 1.25 E. -2

Answers

If the function f(2)=25 and f' (2) = -2.5, then f(2.5) is approximately 23.75

The first-order Taylor's approximation formula, also known as the linear approximation formula, is a mathematical formula that provides an approximate value of a differentiable function f(x) near a point a. The formula is given as

f(x) ≈ f(a) + f'(a)(x - a)

where f'(a) is the derivative of f(x) at the point a. This formula is based on the tangent line to the graph of f(x) at the point (a, f(a)). The approximation becomes more accurate as x gets closer to a.

We can use the first-order Taylor's approximation formula to estimate the value of f(2.5) based on the information given

f(x) ≈ f(a) + f'(a)(x - a)

where a = 2 and x = 2.5. Plugging in the values, we get

f(2.5) ≈ f(2) + f'(2)(2.5 - 2)

f(2.5) ≈ 25 + (-2.5)(0.5)

f(2.5) ≈ 23.75

Learn more about first-order Taylor's approximation formula here

brainly.com/question/14787721

#SPJ4

Which of the following illustrates the product rule for logarithmic equations?
log₂ (4x)= log₂4+log₂x
O log₂ (4x)= log₂4.log2x
log₂ (4x)= log₂4-log₂x
O log₂ (4x)= log₂4+ log₂x

Answers

Answer:

log₂ (4x)= log₂4 + log₂x

Step-by-step explanation:

log₂ (4x)= log₂4 + log₂x illustrates the product rule for logarithmic equations.

The product rule states that logb (mn) = logb m + logb n. In this case, b is 2, m is 4, and n is x. So,

log₂ (4x) = log₂ 4 + log₂ x.

Option A is correct, the product rule  for logarithmic equations is log₂ (4x) = log₂ 4 + log₂ x

What is Equation?

Two or more expressions with an Equal sign is called as Equation.

The logarithm is the inverse function to exponentiation.

The product rule for logarithmic equations states that the logarithm of a product of two numbers is equal to the sum of the logarithms of the individual numbers.

logab=loga + logb

log₂ (4x) = log₂ 4 + log₂ x

Therefore, the correct illustration of the product rule  for logarithmic equations is log₂ (4x) = log₂ 4 + log₂ x

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ5

Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = ln(3n2 + 4) − ln(n2 + 4) lim n→[infinity] an = ?

Answers

The sequence converges to: lim n→[infinity] an = ln(3) = 1.0986. So the sequence converges to 1.0986.

To determine whether the sequence converges or diverges and find the limit, we'll use the properties of logarithms and the concept of limits at infinity.

Given sequence: a_n = ln(3n² + 4) - ln(n² + 4)

Using the logarithm property, ln(a) - ln(b) = ln(a/b), we can rewrite the sequence as:

a_n = ln[(3n² + 4)/(n² + 4)]

Now, we'll find the limit as n approaches infinity:

lim (n→∞) a_n = lim (n→∞) ln[(3n² + 4)/(n² + 4)]

To evaluate this limit, we can divide both the numerator and the denominator by the highest power of n, which is n^2 in this case:

lim (n→∞) ln[(3 + 4/n²)/(1 + 4/n²)]

As n approaches infinity, the terms with n² in the denominator will approach 0:

lim (n→∞) ln[(3 + 0)/(1 + 0)] = ln(3)

So, the sequence converges, and the limit is ln(3).

Learn more about convergence here: brainly.com/question/15415793

#SPJ11

Many situations in business require the use of an "average" function. One example might be the determination of a function that models the average cost of producing an item. In this activity, you will build and use an "average" function. When the iPhone was brand new, one could buy a 8-gigabyte model for roughly $600. There was an additional $70-per month service fee to actually use the iPhone as intended. We will assume for this activity that the monthly service fee does not change. A. Determine the total cost of owning an iPhone after: i. 2 months ii. 4 months iii. 6 months iv. 8 months

Answers

The average cost per month of owning an iPhone decreases as the number of months of ownership increases. After 8 months, the average cost per month is $145.

Assuming a constant monthly service fee of $70, the total cost (C) of owning an iPhone for n months can be calculated as:

C = 600 + 70n

where n is the number of months of ownership.

Using this formula, we can calculate the total cost of owning an iPhone after:

i. 2 months:

C = 600 + 70(2) = 740

ii. 4 months:

C = 600 + 70(4) = 880

iii. 6 months:

C = 600 + 70(6) = 1020

iv. 8 months:

C = 600 + 70(8) = 1160

To find the average cost per month, we can divide the total cost by the number of months:

i. Average cost per month after 2 months: 740 / 2 = 370

ii. Average cost per month after 4 months: 880 / 4 = 220

iii. Average cost per month after 6 months: 1020 / 6 = 170

iv. Average cost per month after 8 months: 1160 / 8 = 145

Therefore, the average cost per month of owning an iPhone decreases as the number of months of ownership increases. After 8 months, the average cost per month is $145.

Learn more about “ average cost “ visit here;

https://brainly.com/question/31116213

#SPJ4

Find the Taylor Series for f centered at 4 if
f (n)(4) =((-1)nn!)/(3n(n+1))
What is the radius of convergence of the Taylor series?

Answers

We have computed the Taylor polynomials of the given function f (x) = cos (4x), using around 6 decimals for approximation. These polynomials can then be used to approximate the given function.

What is function?

Function is a block of code that performs a specific task. It can accept input parameters and return a value or a set of values. Functions are used to break down a complex problem into simple, manageable tasks. They also help improve code readability and re-usability. By using functions, you can write code more efficiently and easily maintain your program.

The Taylor series of a given function is a polynomial approximation of that function, derived using derivatives. In this case, we are asked to compute the Taylor polynomial for the function f (x) = cos (4x).

The Taylor polynomials of f are as follows:

p0(x) = 1

p1(x) = 1 - 8x2

p2(x) = 1 - 8x2 + 32x4

p3(x) = 1 - 8x2 + 32x4 - 128x6

p4(x) = 1 - 8x2 + 32x4 - 128x6 + 512x8

For any approximations, we can use around 6 decimals. For instance, if x = 0.5, then p4(0.5) = 0.988377, which is an approximation of the actual value of f (0.5), which is 0.98879958.

In conclusion, we have computed the Taylor polynomials of the given function f (x) = cos (4x), using around 6 decimals for approximation. These polynomials can then be used to approximate the given function.

To know more about function click-
http://brainly.com/question/25841119
#SPJ1

Is (-10,10) a solution for the inequality y≤x+7

Answers

Answer: no

Step-by-step explanation: if we'd substitute the numbers, it'd look like this 10≤-10+7  which isn't true  as "≤" this symbol means more than or equals to but -10 plus 7 is equal to 3 so it doesn't fit the inequality

a. what is the probability a randomly selected person will have an iq score of less than 80? (round your answer to 4 decimal places.)

Answers

The probability that a randomly selected person will have an IQ score of less than 80 is approximately 0.0918, or 9.18%

To find the probability that a randomly selected person will have an IQ score of less than 80, we need to consider the properties of the normal distribution, as IQ scores typically follow a normal distribution with a mean (μ) of 100 and a standard deviation (σ) of 15.

1. Calculate the z-score: The z-score represents the number of standard deviations a data point is from the mean. Use the formula:

z = (X - μ) / σ

where X is the IQ score, μ is the mean, and σ is the standard deviation.

z = (80 - 100) / 15
z = -20 / 15
z = -1.3333

2. Look up the z-score in a standard normal distribution table or use a calculator to find the corresponding probability. In this case, the probability is 0.0918.

Therefore, the probability that a randomly selected person will have an IQ score of less than 80 is approximately 0.0918, or 9.18% when rounded to four decimal places.

To know more about Probability refer here:

https://brainly.com/question/30034780

#SPJ11

Two joggers run 6 miles south and then 5 miles east. What is the shortestdistance they must travel to return to their starting point?

Answers

Answer:

7.81 miles

Step-by-step explanation:

pythagorean theorem, 6 units downwards, and 5 east, so we have to calculate the hypotenuse, or sqrt( 6^2 + 5^2) which is sqrt61 or 7.81 miles

State the trigonometric substitution you would use to find the indefinite integral. Do not integrate. x^2(x^2 - 64)^3/2 dxx(θ)=

Answers

The trigonometric substitution to find the indefinite integral is x = 8sec(θ).

Explanation:

To find the trigonometric substitution for the given integral, follow these steps:

Step 1: we first notice that the expression inside the square root can be written as a difference of squares:

x^2 - 64 = (x^2 - 8^2)

Step 2: substitute x = 8sec(θ), which leads to the following substitutions:

x^2 = 64sec^2(θ)
x^2 - 64 = 64 tan^2(θ)

And
dx = 8sec(θ)tan(θ) dθ

Step 3: With these substitutions, the given integral can be rewritten as:

∫ x^2(x^2 - 64)^3/2 dx = ∫ (64sec^2(θ))(64tan^2(θ))^3/2 (8sec(θ)tan(θ)) dθ

Step 4: Simplifying this expression, we get:

∫ 2^18sec^3(θ)tan^4(θ) dθ

Therefore, the trigonometric substitution to find the indefinite integral is x = 8sec(θ).

Know more about the indefinite integral click here:

https://brainly.com/question/31326046

#SPJ11

help finding coordinates

Answers

The coordinates of N by the 270 degree rotation clockwise rule is (-7, 3)

Finding the coordinates of N

From the question, we have the following parameters that can be used in our computation:

N = (-3, 7)

The transfomation rule is given as

270 degree rotation rule clockwise

Mathematically, this is represented as

(x, y) = (-y, x)

Substitute the known values in the above equation, so, we have the following representation

N' = (-7, 3)

Hence, the coordinates of N after the rotation is (-7, 3)

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

describe in words when it would be advantageous to use polar coordinates to compute a double integral.

Answers

When each point on a plane of a two-dimensional coordinate system is decided by a distance from a reference point and an angle is taken from a reference direction, it is known as the polar coordinate system.

Polar coordinates are advantageous when the region being integrated over has a circular or symmetric shape. This is because polar coordinates use angles and radii to describe points in a two-dimensional plane, which aligns well with circular and symmetric shapes. Additionally, polar coordinates can simplify the integrand, as some functions are more easily expressed in terms of angles and radii rather than Cartesian coordinates.

learn more about "Polar coordinate":-https://brainly.com/question/29012031

#SPJ11

Use a table with values x = {−2, −1, 0, 1, 2} to graph the quadratic function y = −2x^

2.

Answers

To graph the quadratic function y=-2x^2 using the given values of x, one can create a table with two columns: one for x and the other for y. Starting with x=-2, we can substitute this value into the equation to find the corresponding value of y, which is y=-8. Similarly, by substituting -1, 0, 1, and 2 into the equation, we can find corresponding values of y as 2, 0, -2, and -8, respectively. By plotting these points on a graph and connecting them, we get a downward facing parabola with its vertex at (0,0).

Other Questions
Journal Questions: Life of Pi by Yan MartelAnswer these questions thoroughly:1. The role of Religion and God in Pi's life stands out particularly at the beginning of the story. How do Pi's beliefs influence a major decision in his life?2. Some authors utilize multiple voices to show readers a more complete view of the characters and their situation. How are the voices of Pi and the narrator different? 3.A popular form of novels and films is the bildungsroman, the story of a characters emotional or psychological coming of age. How is the Life of Pi a bildungsroman? Break-Even SalesBeerBev, Inc., reported the following operating information for a recent year (in millions):Sales$6,512Cost of goods sold$1,628Gross profit$4,884Marketing, general, and admin. expenses592Income from operations$ 4,292Assume that BeerBev sold 37 million barrels of beer during the year, that variable costs were 75% of the cost of goods sold and 50% of marketing, general and administration expenses, and that the remaining costs are fixed. For the following year, assume that BeerBev expects pricing, variable costs per barrel, and fixed costs to remain constant, except that new distribution and general office facilities are expected to increase fixed costs by $21.09 million.a. Compute the break-even sales (in barrels) for the current year. Round your answer to two decimal places. Enter your answers in millions. Can Sport Hunting Control Predator Populations?A puma, also called a cougar, is a large predatory feline found in North America. The puma is an ambush predator, and feeds on a variety of prey, such as rodents and deer. They have also been known to attack livestock, pets, and even humans. To reduce threats to human and livestock, several states legalized the sport hunting of pumas. Sport hunting, also called trophy hunting, refers to hunting wild animals for the purpose of display or keeping a trophy. State agencies also argued that reducing puma populations would increase the number of deer, which are also resources desired by hunters.1) Which of the following would be the best representation for a hypothesis related to puma sport hunting? a. If pumas are hunted, there will be fewer attacks on humans and livestock by pumas. b. If pumas are hunted, then there will be a greater number of deer. c. Both of these are valid hypotheses. 2) In order to test a hypothesis that trophy hunting will reduce attacks on humans and livestock, what other information is needed? a. the number of farms or livestock in an area b. the number of encounters with pumas in an area (by humans or livestock) c. the birth and death rates of puma populations3) Not all experiments have a control group, but in this instance, which would best serve as a control? a. puma attacks in states that dont allow trophy hunting b. the number of deer in areas without pumas c. the number of pumas in areas that do not allow huntingScientists collected data from ten states that allowed sport hunting of pumas and compared that data to one state, California, where pumas were completely protected from sport hunting. In California, pumas can be killed by conservation officers if they pose a threat. 4) If sport hunting of pumas reduces human and livestock attacks, then which of the following would be observed in California? a. California will have fewer incidences of puma attacks b. California will have more incidences of puma attacks5) The graph shows per capita puma incidences. This means that each bar represents a number per millions of people. Showing per capita data helps scientists compare more populated states to less populated states. Which state had the highest number of per capita attacks since 1972? a) Wyoming (WY) b) California (CA) c) Montana (MT)6) How many attacks (per million) occurred in Idaho (ID) since the year 2000? since the year 1972? (2 questions)7) How many attacks (per million) occurred in California (CA) since the year 2000? since the year 1972? (2 questions)8. What are the pros and cons of sport hunting (2 points)Sample article: https://bassanglermag.com/main-pros-and-cons-of-hunting/Pro:Con:*Just need some help with these questions, help is appreciated what is the charge of the complex formed by a chromium(iii) metal ion coordinated to six water molecules? (a) suppose a customer withdraws money from her checking account in bank a. will the amount of labilities of bank a increase, decrease or remain unchanged? the human body cools itself by sweating. what role does latent heat play?\ the layers and blocks rotate, but the faults do not rotate what is chemical equitation What is the percent dissociation of 0.40 M butyric acid (HC4H,O2, K 148 x 10-? A. 0.24% B. 0.96% C. 6.1x10-3% D. 3.7x10-3% E. 0.61% The purpose of rubric-to-header.awk is to convert a "rubric file" into the header line of a CSV file. A rubric file is a JSON file I use to specify the problems in a homework and the points for each problem. Look at the files rubric1.json and rubric2.json. Your program needs to handle rubric files with any level of nesting, but you can assume each line of a rubric file is either:a line containing only '{' or '}'a line containing a problem name in double quotes and then a colon symbol, with white space between thema line containing a problem name in double quotes, a colon, a point value, and an optional comma, with white space between themEdit only rubric-to-header.awk!Hint: you may want to use stack using an awk array. My solution is about 20 lines of code, including an awk function that prints the appropriate name given the stack and a depth in the stack.As usual, do not use awk statements 'getline' or 'next'.Testing your code. Included in the tar file are files test1.sh and test2.sh, which you can use to test your code. I may use slightly different rubric files when I test your code.Submission: Submit your edited rubric-to-header.awk on iLearn.Grading: 10 points for each test that is passed.rubric1.json looks like this{"1" :{"a" : 25 ,"b" : 25 ,}"2" :{"a" : 20 ,"b" : 15 ,"c" : 15 ,}} Please help me with this word problem!Suppose you lay exactly 160 feet of fencing around a rectangular garden. If the length of the garden is 3 times its width, find the dimensions of the garden.Length: __ feetWidth: __ feet Help me please I dont know how to solve this. The nurse assesses a 70 year-old male's laboratory results during a routine clinic visit. Which result would indicate a need for information and education?a. RBC 5.0 million/mm3 ( 5 x 1012/L)b. Serum glucose 90 mg/dL (5 mmol/L)c. LDL Cholesterol 130 mg/dL (3.37 mmol/L)d. Serum albumin 2.5 g/dL (25 g/L) Ashlee purchased a house for $875 000. She made a down payment of 15% of the purchase price and took out a mortgage for the rest. The mortgage has an interest rate of 6.95% compounded monthly, and amortization period of 20 years, and a 5 year term. Calculate Ashleys monthly payment. How many yards are in four and one-half miles? 7,040 yards 7,920 yards 8,448 yards 8,800 yards in your understanding, do you think that the following statement is correct: "water is an effective solvent for living systems because of its inert behavior"? why or why not? explain your answer. A ray of light is bent as it passes from medium 1 to medium 2. n1 n2 1) Compare the indices of refraction in the two mediums. n1> n2 n1 -n2 O n1 n2 Submit Survey Question) 2) Briefly explain your reasoning Submit which is higher biotic potential,a pumpkin or a peach? how quickly should congress act to remedy an aggregate demand excess or aggregate demand shortfall? koh is used to precipitate each of the cations from the respective solutions. determine the minimum hydroxide required for the precipitation to begin a. 0.015 m cacl2 ksp (ca(oh)2 ) = 4.68x10-6