A study was performed to test whether cars get better mileage on premium regular gas. Each of 10 cars was first filled with either regular or premium ss, coin toss, and the mileage for that tank was recorded. same cars using the other kind of gasoline. W significantly better mileage with premium gas. The mileage was recorded again for the e want to determine whether cars get reg- c(26, 29, 21, 22, 20, 22, 24, 2s, 25, 29) premC(19, 22, 24, 24, 2s, 25, 26, 26. 28, 32) a. What test should be used? b. What are the hypotheses? c. Based on the R outputs, what is your conclusion about hypotheses testing? data: prem and reg t-0.59702, df 9, p-value 0.2826 alternative hypothesis: true difference in means is greater thano 95 percent confidence interval: -1.656341 Inf sample estimates: mean of the differences 0.8

Answers

Answer 1

we do not have enough evidence to conclude that cars get better mileage on premium gasoline. Thus, we can conclude that there is no significant difference between the mileages of cars using premium and regular gasoline.

a. What test should be used?

The test that should be used is the Two-sample t-test because we are working with two independent groups.

b. What are the hypotheses?

The null hypothesis is that there is no difference between the mileage of cars using premium and regular gasoline, while the alternative hypothesis is that there is a difference between the two mileages.

Mathematically, this can be stated as follows: Null hypothesis: µ1 = µ2Alternative hypothesis: µ1 > µ2Where µ1 is the population mean for premium gasoline and µ2 is the population mean for regular gasoline.

c. Based on the R outputs, what is your conclusion about hypotheses testing?

From the R outputs, we can see that the p-value is 0.2826. Since this value is greater than the level of significance (α) of 0.05, we fail to reject the null hypothesis. Therefore, we do not have enough evidence to conclude that cars get better mileage on premium gasoline. Thus, we can conclude that there is no significant difference between the mileages of cars using premium and regular gasoline.

To Know more about  null hypothesis visit:

https://brainly.com/question/29892401

#SPJ11

Answer 2

a. The test that should be used is a two-sample t-test.

b. The null hypothesis is "The population mean mileage of cars using regular and premium gasoline are equal."

The alternative hypothesis is "The population mean mileage of cars using premium gasoline is more than the population mean mileage of cars using regular gasoline."

c. We do not have enough evidence to support the claim that cars get better mileage on premium regular gas.

a. To find what test should be used.

The test that should be used is a two-sample t-test.

b. To find the hypotheses.

The null hypothesis is "The population mean mileage of cars using regular and premium gasoline are equal."

The alternative hypothesis is "The population mean mileage of cars using premium gasoline is more than the population mean mileage of cars using regular gasoline."

c. Based on the R outputs, to find the conclusion about hypotheses testing.

The sample mean of the differences in mileage for cars filled with premium and regular gasoline is 0.8. The calculated t-value is -0.59702.

The calculated p-value is 0.2826.The p-value is higher than the significance level of 0.05.

Therefore, we fail to reject the null hypothesis.

We can't conclude that the population mean mileage of cars using premium gasoline is more than the population mean mileage of cars using regular gasoline.

Hence, we do not have enough evidence to support the claim that cars get better mileage on premium regular gas.

To know more about p-value, visit:

https://brainly.com/question/30461126

#SPJ11


Related Questions

Philip is recording what kind of shoes people are wearing at the mall. Out of the 12 people he has seen, 6 are wearing high heels. Considering this data, how many of the next 10 people Philip sees would you expect to be wearing high heels?​

Answers

Answer: 5 people

Step-by-step explanation:

The easiest way to do this is to set up a proportion. 6/12=x/10. To solve, cross-multiply and divide. Multiply 6 and 10 (6*10=60) and divide by 12 (60/12=5).

You can also find that 6/12 is equal to 1/2 by dividing each side by 6. Then multiply 10 by 1/2 (or divide 10 by 2) to get the final answer of 5 people.

The answer of this question is 5 due to it being half

state a,b, and the y-intercept then graoh the function on a graphing calculator ONLY PROBLEMS 1, 3, 5. WILL MARK BRAINLEST PLEASE HELP MATH ISNT MY STRONG SUBJECT​

Answers

Step-by-step explanation:

y-intercept=when x is 0

So just set 0 for x in all equations

1. 2(3)^x

2(3^0)

2(1)=2

(0,2)

3. -5(.5)^x

-5(.5)^0

-5(1)

-5=y

(0,-5)

6(3)^x

6(3)^0

6(1)=6

(0,6)

Hope that helps :)

Maya cuts sandwiches into halves. She has 15 sandwiches. How many halves does she make

Answers

Answer:

30

Step-by-step explanation:

15 x 2

This is a 3rd grade math question. I don't know how to explain it to a 9yr old

Answers

this is 3rd grade math? jesus..

Answer:

that poor 3rd grader O.O that is hard

Step-by-step explanation:

online

Maya buys ice cream and onions at the store. She pays a total of $21.29. She pays a total of $3.80 for the ice cream. She buys 3 bags of onions that each cost the same amount. Write and solve an equation which can be used to determine xx, how much each bag of onions costs.

Answers

The answer is $5.83 per bag of onions
21.29=3x+3.80

What is the value of c^2-d^2 if c+d=7 and c-d=-2?

Answers

Answer:

- 14

Step-by-step explanation:

c² - d² ← is a difference of squares and factors as

= (c + d)(c - d) ← substitute values for factors

= 7 × - 2

= - 14

How many different simple random samples of size 5 can be obtained from a population whose size is 35? The number of simple random samples which can be obtained is a (Type a whole number.)

Answers

The number of different simple random samples of size 5 that can be obtained from a population of size 35 is 324,632.

To calculate the number of different simple random samples of size 5 that can be obtained from a population of size 35, we can use the combination formula. The formula for combination is given by:

C(n, r) = n! / (r! * (n-r)!)

where n is the population size and r is the sample size.

In this case, we have n = 35 (population size) and r = 5 (sample size). Plugging in these values into the formula:

C(35, 5) = 35! / (5! * (35-5)!)

Simplifying this expression:

C(35, 5) = 35! / (5! * 30!)

Calculating the factorial values:

C(35, 5) = 35 * 34 * 33 * 32 * 31 / (5 * 4 * 3 * 2 * 1)

C(35, 5) = 324,632

Therefore, the number of different simple random samples of size 5 that can be obtained from a population of size 35 is 324,632.

Learn more about the combination formula:

https://brainly.com/question/28065038

#SPJ11

HELPPPPPPPP 5TH GRADE MATH Select the statement that correctly describes the relationship between these two sequences: 1, 2, 3, 4, 5 and 10, 20, 30, 40, 50.

Each term in the second sequence is 10 times the corresponding term in the first sequence.
Each term in the second sequence is double the corresponding term in the first sequence.
Each term in the second sequence is 20 times the corresponding term in the first sequence.
Each term in the first sequence is double the corresponding term in the second sequence.

Answers

Answer:

Each term in the second sequence is double the corresponding term in the first sequence.

Step-by-step explanation:

pls mark as brainliest

The correct statement that describe the two sequences is:

Each term in the second sequence is 10 times the corresponding term in the first sequence.

What is an arithmetic sequence?

This is a type of sequence which have common difference between each term. It is represent mathematically as:

Tₙ = a + (n – 1)d

Where

Tₙ is the nth term

a is the first term

n is the number of terms

d is the common difference

How to determine the relationship between the sequences Sequence 1: 1, 2, 3, 4, 5 Sequence 2: 10, 20, 30, 40, 50Relationship =?

Relationship = sequence 2 / sequence 1

For the 1st term Sequence 1 = 1Sequence 2 = 10Relationship =?

Relationship = sequence 2 / sequence 1

Sequence 2 / sequence 1 = 10 / 1

Cross multiply

Sequence 2 = 10 × sequence 1

For the 2nd term Sequence 1 = 2Sequence 2 = 20Relationship =?

Relationship = sequence 2 / sequence 1

Sequence 2 / sequence 1 = 20 / 2

Sequence 2 / sequence 1 = 10 / 1

Cross multiply

Sequence 2 = 10 × sequence 1

If we continue with the pattern above, we'll discovered that

Sequence 2 = 10 × sequence 1

Thus, we can conclude that:

Each term in the second sequence is 10 times the corresponding term in the first sequence.

Learn more about arithmetic sequence:

https://brainly.com/question/16130064

Determine an expression for dy/d x = y' if [1+y]²-x+y=4 10.
The integration method you must use here is
Logarithmic q_23 = 1 Implicit q_23 = 2 Product rule q_23 = 3

The simplified expression for y' = 1/q_24y + q_25

Answers

The required expression is: y' = (1/2)(1-y)/(1+y)

Given [1 + y]² - x + y = 4 10. We need to determine an expression for dy/dx = y'.

Simplification of the given expression:

[1 + y]² + y - 4 10 = x

Differentiating w.r.t x by using the chain rule, we get:

(2[1 + y])*(dy/dx) + dy/dx + 1 = 0

(dy/dx)[2(1 + y) + 1] = - 1 - [1 + y]²

(dy/dx) = [- 1 - (1 + y)²]/[2(1 + y)]

The given expression is [1+y]²-x+y=4 10. We need to determine an expression for dy/d x = y'.

Differentiating the given equation with respect to x, we get:

2(1+y).dy/dx - 1 + dy/dx = 0

dy/dx(2+2y) = 1 - y(2+dy/dx)

dy/dx(2+2y) = (1-y)(2+dy/dx)

dy/dx = (1-y)/(2+2y)

dy/dx = (1/2)(1-y)/(1+y)

Hence, the required expression is: y' = (1/2)(1-y)/(1+y)

Learn more about chain rule here:

https://brainly.com/question/31585086

#SPJ11

Is (x+5)2 equivalent to 2x2+10x +10? Explain why or
why not?

Answers

Answer:

no

Step-by-step explanation:

no because its equal to 2x+10

Let RP* be a complexity class defined as follows. A language L is in RP* if and only if there is a polynomial time Turing machine M and a polynomial p such that (i) if we L, then Prųe{0,1 }p(w) [M accepts (w,t)]21-(1/2)lwl and (ii) if w & L, then Prge{0,1}P(w) [M rejects (w,t)] = 1. Thus M comes "exponentially close" to deciding L with certainty. Prove that RP* = RP.

Answers

Main answer: RP* = RP.

Supporting answer:

RP* is defined as the set of languages L for which there exists a polynomial-time Turing machine M that, on input w, halts with probability at least 1/2 if w is not in L, and halts with probability at least 1 - 2-l|w| if w is in L. This definition is almost identical to the definition of RP, except that the probability of error is reduced from 1/2 to 2-l|w|. However, RP* and RP are equivalent.

To see that RP* is a subset of RP, note that if a language L is in RP*, then there exists a polynomial-time Turing machine M and a polynomial p such that (i) if we L, then Prųe{0,1 }p(w) [M accepts (w,t)]21-(1/2)lwl and (ii) if w & L, then Prge{0,1}P(w) [M rejects (w,t)] = 1. This means that M can be used as a randomized algorithm for L with error probability at most 1/2. Therefore, L is in RP.

To see that RP is a subset of RP*, note that if a language L is in RP, then there exists a polynomial-time Turing machine M and a constant c such that (i) if we L, then Prųe{0,1}c|w|[M accepts (w,t)] >= 1/2 and (ii) if w & L, then Prge{0,1}P(w) [M rejects (w,t)] < 1/2. By setting p(n) = c * 2n, we obtain a Turing machine M' that satisfies the conditions of RP*. Therefore, L is in RP*.

Know more about polynomial-time here:

https://brainly.com/question/32571978

#SPJ11

Current Attempt in Progress The following table lists the monthly incomes (in hundreds of dollars) and the monthly rents paid (in hundreds of dollars) by a sample of six families. Monthly Income Monthly Rent 24 7.0 16 4.5 19 6.5 31 12.0 10 4.5 27 8.5 What is the 99% confidence interval for the mean monthly rent of all families with a monthly income of $2500, rounded to the nearest penny?

Answers

The 99% confidence interval for the mean monthly rent of all families with a monthly income of $2500 is given as follows:

(5.96, 22.38)

What is a t-distribution confidence interval?

The t-distribution is used when the standard deviation for the population is not known, and the bounds of the confidence interval are given according to the equation presented as follows:

[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]

The variables of the equation are listed as follows:

[tex]\overline{x}[/tex] is the sample mean.t is the critical value.n is the sample size.s is the standard deviation for the sample.

The critical value, using a t-distribution calculator, for a two-tailed 99% confidence interval, with 12 - 1 = 11 df, is t = 3.1058.

The parameters are given as follows:

[tex]\overline{x} = 14.17, s = 9.16, n = 12[/tex]

The lower bound of the interval is given as follows:

[tex]14.17 - 3.1058 \times \frac{9.16}{\sqrt{12}} = 5.96[/tex]

The upper bound of the interval is given as follows:

[tex]14.17 + 3.1058 \times \frac{9.16}{\sqrt{12}} = 22.38[/tex]

More can be learned about the t-distribution at https://brainly.com/question/17469144

#SPJ4

find the value of X, round to the nearest 10th

Answers

Answer:

4.0731 cm

Step-by-step explanation:

Use pythagorean Theorem which is a^2 + b^2 = c^2 where a and b are the sides of the triangle and c is the hypotenuse, in other words the longest side.

Since x is in line with the center of the circle and is perpendicular with line that measures 15.6 cm we know that one side of the triangle is half of 15.6 or 7.8.

So then we input our known values into the formula and solve for the missing one. The formula looks like this

7.8^2 + b^2 = 8.8^2

solve for b and you get about 4.07431

your very welcome

Answer:

X= 4.1

Step-by-step explanation:

Other answer wasn't rounded.

X= 4.1 cm


For a standard normal distribution, find:

P(-2.46 < z < 2.82)

Answers

Given: For a standard normal distribution, we need to find the probability between P(-2.46 < z < 2.82). It is found that P(-2.46 < z < 2.82) = 0.9905.

Explanation: Given, P(-2.46 < z < 2.82)

The standard normal distribution has a mean of μ=0 and a standard deviation of σ=1. It is called the standard normal distribution, because it is the normal distribution where z-scores correspond to the number of standard deviations above or below the mean.

A z-score tells us how many standard deviations a value is from the mean.

A positive z-score indicates a value above the mean, while a negative z-score indicates a value below the mean.

To find the probability of P(-2.46 < z < 2.82), we need to find the area under the standard normal distribution curve between -2.46 and 2.82.

To find this probability, we can use a standard normal distribution table or a calculator that has a normal distribution function.

Using a standard normal distribution table, we can find the area to the left of z=2.82 and the area to the left of z=-2.46 and then subtract the two values to find the area between these z-scores.

The area to the left of z=2.82 is 0.9974, and the area to the left of z=-2.46 is 0.0069.

Therefore, the area between these z-scores is:

P(-2.46 < z < 2.82) = 0.9974 - 0.0069

= 0.9905

Therefore, P(-2.46 < z < 2.82) = 0.9905.

To know more about standard normal distribution, visit:

https://brainly.com/question/25279731

#SPJ11

Please help and thanks

Answers

a right angle so 90 degrees

use cylindrical coordinates. find the mass and center of mass of the s solid bounded by the paraboloid z = 12x2 12y2 and the plane z = a (a > 0) if s has constant density k.

Answers

The center of mass can be determined by dividing the moment of the solid with respect to each coordinate axis by the total mass.

In cylindrical coordinates, the paraboloid and the plane can be represented as z = 12r^2 and z = a, respectively. To find the mass, we integrate the density function k over the region of the solid, which is bounded by z = 12r^2, z = a, and the region in the xy-plane where the paraboloid intersects the plane z = a. The integral becomes M = k * ∭ρ dV, where ρ is the density function.

To find the center of mass, we calculate the moments of the solid with respect to each coordinate axis. The x-coordinate of the center of mass can be obtained by dividing the moment about the x-axis by the total mass. Similarly, the y-coordinate and z-coordinate of the center of mass can be calculated by dividing the moments about the y-axis and z-axis, respectively, by the total mass.

By evaluating the triple integral and performing the necessary calculations, we can determine the mass and center of mass of the given solid in cylindrical coordinates.

Learn more about coordinates here:

https://brainly.com/question/22261383

#SPJ11

"The life time, in tens of hours, of a certain delicate electrical component is modeled by the random variable X with probability density function:

w= c(9-x) 0 <= x <=9
0 otherwise

(a) show that ca 2 (b) Find the mean life time of a component.

Answers

(a) The integral of w(x) over its entire domain is zero, it cannot be equal to 1. This means that the given function does not satisfy the normalization property and hence cannot be a probability density function.

To show that the given probability density function is a valid one, we need to verify that it satisfies the two properties of a probability density function:

1. Non-negativity:

For 0 <= x <= 9, c(9-x) is always non-negative, since c is a positive constant and (9-x) is also non-negative in this range. For any other value of x, w(x) is zero. Hence, w(x) is non-negative for all x.

2. Normalization:

[tex]a[0,9] w(x) dx = a[0,9] c(9-x) dx[/tex]

= [tex]c a[0,9] (9-x) dx[/tex]

= [tex]c [(9x - (x^2)/2)] [from 0 to 9][/tex]

= [tex]c [(81/2) - (81/2)][/tex]

= [tex]c (0)[/tex]

=[tex]0[/tex]

(b) The given probability density function does not have a valid normalization constant and hence does not represent a valid probability distribution.

To find the mean life time of a component, we need to calculate the expected value of X using the formula:

[tex]E(X) = a[a,b] x (w(x) dx)[/tex]

where a and b are the lower and upper bounds of the domain respectively.

In this case, we have:

a = 0 and b = 9

w(x) = c(9-x)

Hence,

[tex]E(X) = a[0,9] x*c(9-x) dx[/tex]

= [tex]c a[0,9] (9x - x^2) dx[/tex]

= [tex]c [(81 x^2/2) - (x^3/3)] [from 0 to 9][/tex]

=[tex]c [(6561/2) - (729/3)][/tex]

= [tex]c (2958/3)[/tex]

To find the value of c, we can use the normalization property:

[tex]a[0,9] w(x) dx = 1[/tex]

[tex]a[0,9] c(9-x) dx = 1[/tex]

[tex]c a[0,9] (9-x) dx = 1[/tex]

[tex]c [(81/2) - (81/2)] = 1[/tex]

[tex]c * 0 = 1[/tex]

This is not possible, since c cannot be infinite.

To know more about probability density function refer here:

https://brainly.com/question/32227690#

#SPJ11

The null hypothesis is that 30% people are unemployed in Karachi city. In a sample of 100 people, 35 are unemployed. Test the hypothesis with the alternative hypothesis is not equal to 30%. What is the p-value?

Answers

After testing hypothesis with alternative-hypothesis is not equal to 30%,  the p-value is 0.278.

To test the hypothesis that proportion of unemployed people in Karachi city is not equal to 30%, we perform a two-tailed test using binomial distribution.

The null-hypothesis (H₀) is that the proportion of unemployed people is 30% (p = 0.30), and the alternative-hypothesis (H₁) is that the proportion is not equal to 30% (p ≠ 0.30),

We have a sample of 100 people, and 35 of them are unemployed. we will calculate "test-statistic" "z-score" and use it to find p-value,

The "test-statistic" formula for "two-tailed" test is :

z = (p' - p₀)/√((p₀ × (1 - p₀))/n),

where p' = sample proportion, p₀ = hypothesized-proportion under the null-hypothesis, and n = sample-size,

In this case, p' = 35/100 = 0.35, p₀ = 0.30, and n = 100,

Calculating the test statistic:

z = (0.35 - 0.30)/√((0.30 × (1 - 0.30)) / 100)

= 0.05/√((0.30 * 0.70) / 100)

≈ 0.05/√(0.21 / 100)

≈ 0.05/√(0.0021)

≈ 0.05/0.0458258

≈ 1.0905

To find the p-value, we calculate probability of obtaining "test-statistic" as extreme as 1.0905 in a two-tailed test.

We know that the cumulative-probability (area) to left of 1.0905 is approximately 0.861.

Since this is a two-tailed test, we double this probability to get "p-value":

So, p-value = 2 × (1 - 0.861),

= 2 × 0.139,

= 0.278

Therefore, the p-value for hypothesis test is 0.278.

Learn more about P Value here

https://brainly.com/question/28197808

#SPJ4

For women aged 18-24. systolic blood pressures (in mm Hg) are normally distributed with a mean of 114 8 and a standard deviation of 13.1. If 23 women aged 18-24 are randomly selected, find the probability that their mean systolic blood pressure is between 119 and 122.

Answers

The probability that their mean systolic blood pressure is between 119 and 122 is 0.0807.

The given distribution is normal.

So, the formula for the standardized random variable, z can be used.

Here,Mean of the given distribution, μ = 114.8

Standard deviation of the given distribution, σ = 13.1

Number of women aged 18-24 randomly selected, n = 23

Let X be the mean systolic blood pressure of 23 randomly selected women aged 18-24.

P(X is between 119 and 122) = P((X-μ)/σ is between (119-μ)/(σ/√n) and (122-μ)/(σ/√n))

= P((X-μ)/σ is between (119-114.8)/(13.1/√23) and (122-114.8)/(13.1/√23))

= P((X-μ)/σ is between 1.35 and 2.45)

Using standard normal distribution table,P(1.35 < z < 2.45)= P(z < 2.45) - P(z < 1.35)≈ 0.9922 - 0.9115= 0.0807

Thus, the probability that the mean systolic blood pressure of the randomly selected 23 women aged 18-24 is between 119 and 122 is approximately equal to 0.0807.

#SPJ11

Let us know moree about probability: https://brainly.com/question/11034287

What is the measure of angle x?

Answers

Answer:

47 degrees

Step-by-step explanation:

A triangle’s degrees add up to 180, so we can use that theorem

102 + 31 + x = 180

133 + x = 180

x = 47 degrees

Answer: 47
Explanation
102+31+x=180
133 plus x = 180
=47

Use the GCF and distributive property to write an equivalent expression.

Answers

Answer:

2

6

9

Step-by-step explanation:

Because if you pay attention to our teacher he told us how to respond it!

if an analyst wants to estimate the mean for an entire population (mu), the estimate would be more accurate if the analyst computed:

Answers

If an analyst wants to estimate the mean for an entire population (μ), the estimate would be more accurate if the analyst computed the sample mean.

If an analyst wants to estimate the mean for an entire population (μ), the estimate would be more accurate if the analyst computed the sample mean.

What is a population?In statistics, a population is a complete set of events that a statistician desires to investigate. A population is a collection of individuals, items, or data points that have a specific attribute of interest to the analyst.

What is an estimate? An estimate is an approximation of an unknown quantity that is dependent on imperfect or incomplete information. In statistics, an estimate is a projection of a population parameter dependent on data collected from a sample. An estimate is a numerical value generated from a statistical formula that is intended to provide an approximate value for an unknown population parameter.

What is an analyst?An analyst is an individual who examines a company or business's financial and business data to evaluate their health and determine their future development.

What does it mean to estimate the mean for an entire population?In statistics, estimating the mean for an entire population entails using a sample of data to calculate an approximate value of the mean for the entire population. The mean is the numerical value that provides information about the data set's central tendency. The analyst should choose a representative sample of the population to ensure the estimate is accurate.

What is the best way to estimate the mean of the entire population?

The estimate would be more accurate if the analyst computed the sample mean. The sample mean is an estimate of the population mean, denoted as μ. Sample mean is the average of the sampled data, and it is computed as follows;$$\overline{x}=\frac{\sum_{i=1}^{n}x_i}{n}$$

To know more about mean visit:

https://brainly.com/question/1136789

#SPJ11

If an analyst wants to estimate the mean for an entire population (μ), the estimate would be more accurate if the analyst computed the mean of a larger random sample.

A random sample is a method of selecting a subset from the entire population. It should be such that every member of the population has an equal chance of being chosen.

The sample should be sufficiently large and representative of the population as a whole to make reasonable inferences regarding the population. The mean value computed from a sample is used as an estimate of the true population mean. The sample mean is a random variable that can fluctuate from one sample to the next, depending on the sample that is taken. It has a standard deviation, called the standard error of the mean, that can be calculated using the following formula:standard error of the mean = standard deviation of the population / square root of the sample size.The larger the sample size, the smaller the standard error of the mean, and hence the more accurate the estimate of the population mean will be.

To know more about estimate, visit:

https://brainly.com/question/30870295

#SPJ11

Which graph represents the function f(x) = 1/3 |x|?

Answers

Answer:

b

Step-by-step explanation:

Let a € (-1,1). Evaluate TT cos 20 de. 1-2a cos 0 + a2 d0

Answers

The value of the given integral is 2π [sin(20e) - a² sin(20e) - (a²/2) sin(20e) + (a²/2) (1/2) [sin(22e)/22 + sin(18e)/18] + C]

To evaluate the given expression:

∫∫ cos(20e) (1 - 2a cos(e) + a²) de dθ

We need to integrate with respect to both e and θ.

First, let's integrate with respect to e:

∫ cos(20e) (1 - 2a cos(e) + a²) de

Using the power reduction formula for cosine, we can rewrite the integrand:

= ∫ cos(20e) (1 - a² + a² cos²(e) - 2a cos(e)) de

= ∫ cos(20e) (1 - a² - a² sin²(e)) de

Now, we can integrate term by term:

= ∫ cos(20e) de - a² ∫ cos(20e) sin²(e) de - a² ∫ cos(20e) de

The first and third integrals are straightforward to evaluate:

= ∫ cos(20e) de - a² ∫ cos(20e) de - a² ∫ cos(20e) sin²(e) de

= sin(20e) - a² sin(20e) - a² ∫ cos(20e) sin²(e) de

Now, let's evaluate the remaining integral with respect to e:

= sin(20e) - a² sin(20e) - a² ∫ cos(20e) sin²(e) de

Using the trigonometric identity sin²(e) = (1 - cos(2e))/2, we can simplify the integrand:

= sin(20e) - a² sin(20e) - a² ∫ cos(20e) ((1 - cos(2e))/2) de

= sin(20e) - a² sin(20e) - (a²/2) ∫ cos(20e) - cos(20e) cos(2e) de

= sin(20e) - a² sin(20e) - (a²/2) ∫ cos(20e) de + (a²/2) ∫ cos(20e) cos(2e) de

Integrating the first term gives:

= sin(20e) - a² sin(20e) - (a²/2) ∫ cos(20e) de + (a²/2) ∫ cos(20e) cos(2e) de

= sin(20e) - a² sin(20e) - (a²/2) sin(20e) + (a²/2) ∫ cos(20e) cos(2e) de

Next, let's evaluate the remaining integral with respect to e:

= sin(20e) - a² sin(20e) - (a²/2) sin(20e) + (a²/2) ∫ cos(20e) cos(2e) de

Using the trigonometric identity cos(a) cos(b) = (1/2) [cos(a + b) + cos(a - b)], we can simplify the integrand:

= sin(20e) - a² sin(20e) - (a²/2) sin(20e) + (a²/2) ∫ (1/2) [cos(20e + 2e) + cos(20e - 2e)] de

= sin(20e) - a² sin(20e) - (a²/2) sin(20e) + (a²/2) (1/2) [∫ cos(22e) de + ∫ cos(18e) de]

= sin(20e) - a² sin(20e) - (a²/2) sin(20e) + (a²/2) (1/2) [sin(22e)/22 + sin(18e)/18] + C

where C is the constant of integration.

Now, we have the integral with respect to e evaluated. To find the final result, we need to integrate with respect to θ. However, we don't have any dependence on θ in the original expression. Therefore, we can simply multiply the result obtained above by 2π, as we're integrating over the entire range of θ.

To know more about integral, refer to the link below:

https://brainly.com/question/31059545#

#SPJ11

Complete question:

Describe the transformation from the graph (Desmos!)

Answers

Answer: (I am really not sure the answer if it is wrong I am so sorry)

h=3, k=2

Horizontal: up, 2 units

Vertical: up, 3 units

399.2 divided by 1\10 =??

Answers

Answer:

3,992

Step-by-step explanation:

1/10 = 0.1

399.2/0.1 = 3,992

Answer:

3990

Step-by-step explanation:

Place the decimal to a fraction:

399.2 = 399 2/10

Simplify =  399 1/5

Put in improper fraction = 1995/5

Simplify more = 399/1 or 399

So:

399 divided by 1/10 = 3990

tony runs 3 miles in 25 minutes. at the same rate, how many miles would he run in 20 minutes?

Answers

Answer:

2.4

Step-by-step explanation:

3 / 28 = 0.12

(we do this to see how many miles he ran in a minute)

0.12 x 20 = 2.4

(then we multiply how many miles he can run in 20 minutes)

Please help me with this question mark as A branlist please ASAP ASAP please ASAP

Answers

Answer:

x=18

y=27

explanation: 4 times 3 is 12

a pair of dice is rolled, and the number that appears uppermost on each die is observed. refer to this experiment and find the probability of the given event. (enter your answer as a fraction.)

Answers

If a pair of dice is rolled, and the number that appears uppermost on each die is observed, the probability of the sum of the numbers being either 7 or 11 is 2/9.

To find the probability of the sum of the numbers rolled on a pair of dice being either 7 or 11, we need to determine the number of favorable outcomes and the total number of possible outcomes.

There are six possible outcomes for each die, ranging from 1 to 6. Since we are rolling two dice, the total number of possible outcomes is 6 multiplied by 6, which is 36.

To calculate the number of favorable outcomes, we need to determine the combinations that result in a sum of either 7 or 11.

For the sum of 7, there are six possible combinations: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1).

For the sum of 11, there are two possible combinations: (5, 6) and (6, 5).

Therefore, the number of favorable outcomes is 6 + 2 = 8.

The probability of the sum of the numbers being either 7 or 11 is given by the ratio of favorable outcomes to the total number of outcomes:

P(sum is 7 or 11) = favorable outcomes / total outcomes = 8/36 = 2/9.

To learn more about probability click on,

https://brainly.com/question/14536671

#SPJ4

Complete question is:

A pair of dice is rolled, and the number that appears uppermost on each die is observed. Refer to this experiment and find the probability of the given event. (Enter your answer as a fraction.)

The sum of the numbers is either 7 or 11.

Question is in picture

Answers

Answer:

27.5

Step-by-step explanation:

pythagorean theorem. a^2+b^2=c^2.

so 12^2+b^2=30^2

meaning 144+b^2=900

900-144=756

square root 756

b=27.5

Other Questions
pls help!! Bryant earns $15 in commission for every $150 worth of shoes that he sells. Which equation can be used to find the total commission, C, Bryant will earn if the cost, s, of the shoes he sells is known?a) c= 1/15s b) c=1/10sc) 10sd) c=15s Do you think lassiez- faire policies ultimately helped or harmed the American economy? PLEASE HELP ME!!! grades are due tomorrow and this will bring my grade up please help Here is to my last q who are the stakeholders that are affected by anticybersquatting legislation? Mrs. Smith washed 2 5 of her laundry. Her son washed 1 3 of it. Who washed most of the laundry? How much of the laundry still needs to be washed? Two particles, Alpha and Beta, race from the y-axis to the vertical line x = 6*pi. For t >= 0, Alpha's position is given by the parametric equations xalpha = 3t - 4sin(t) and yalpha = 3 - 3cos(t) while Beta's position is given by xbeta = 3t - 4sin(t) and ybeta = 3 - 4sin(t). Which sentence best describes the race and its outcome?(A) Beta starts out in the wrong direction and loses.(B) Alpha takes a shorter path and wins.(C) Alpha moves slower and loses.(D) Beta moves faster but loses.(E) Alpha and Beta tie A rubber ball is dropped from a height of 26 feet, and on each bounce it rebounds up 62% of its previous height. Step 2 of 2: Assuming the ball bounces indefinitely, find the total vertical distance traveled. Round your answer to two decimal places. Will someone please please help me Why would a potential lender be interested in fixed assets and current assets when reviewing the balance sheet of a company applying for a long-term loan? How right equity financing versus debt financing meact a potencial lender's decision? Find the volume of this square pyramid Helppppppppppppppppppppppppppppp??????????????!?????????? ________protects coding sequences at the 5' end of mrna from degradation. I need help I searched this up and found nothing What parts of Corts's letter would be most interesting to a cultural historian? What makes the Japanese Relocation video in this lesson a primary source?0 It was made many years after 1943, when the evacuations occurred.O It includes firsthand interviews with relocated Japanese Americans.O It contains both firsthand accounts and objective analysis of the situation.O It gives a firsthand account of the assumptions behind the events of 1943. I need help please please T/F. A conflict involves a serious clash of values, perceptions, or ideas and can jeopardize productivity in terms of one's relationships at work and dealings with customers What body systems that are most directly responsible for delivering oxygen to an animal's cells The mother of a 9-year-old child who is 5 feet 1 inch (155 cm) in height asks a nurse about car safety seats. What should the nurse tell the mother to use?1) Front booster seat Incorrect2) Rear convertible seat3) Forward-facing car seat4) Rear seat using lap and shoulder seat belts