A tightly wound solenoid is 15 cm long, has 350 turns, and carries a current of 4.0 A. If you ignore end effects, you will find that the value of app at the center of the solenoid when there is no core is approximately

Answers

Answer 1

Answer:

The magnetic field at the center of the solenoid is approximately  0.0117 T

Explanation:

Given;

length of the solenoid, L = 15 cm = 0.15 m

number of turns of the solenoid, N = 350 turns

current in the solenoid, I = 4.0 A

The magnetic field at the center of the solenoid is given by;

[tex]B = \mu_o (\frac{N}{L} )I\\\\B = (4 \pi *10^{-7})(\frac{350}{0.15} )(4.0)\\\\B = 0.0117 \ T[/tex]

Therefore, the magnetic field at the center of the solenoid is approximately  0.0117 T.


Related Questions

A certain superconducting magnet in the form of a solenoid of length 0.300 m can generate a magnetic field of 8.90 T in its core when its coils carry a current of 95 A. Find the number of turns in the solenoid.

Answers

Answer:

The number of turns in the solenoid is 22366.

Explanation:

The number of turns in the solenoid can be found using the following equation:

[tex] B = \mu_{0} I\frac{N}{L} [/tex]

Where:

B: is the magnetic field = 8.90 T

L: is the solenoid's length = 0.300 m

N: is the number of turns =?

I: is the current = 95 A

μ₀: is the magnetic constant = 4π×10⁻⁷ H/m

By solving equation (1) for N we have:

[tex] N = \frac{BL}{\mu_{0} I} = \frac{8.90 T*0.300 m}{4\pi \cdot 10^{-7} H/m*95 A} = 22366 turns [/tex]

Therefore, the number of turns in the solenoid is 22366.

I hope it helps you!

An airplane, starting at rest, takes off on a 600. m long runway accelerating at a rate of 12 m/s/s. How many seconds does it take to reach the end of the runway?

Answers

Answer:

10 seconds

Explanation:

As it starts from rest, then u=0

and by III rd equation of motion:

A designer is creating an obstacle for an obstacle course where a person starts on a moveable platform of height H from the ground. The person grabs a rope of length L and swings downward. At the instant the rope is vertical, the person lets go of the rope and attempts to reach the far side of a water-filled moat. The left side of the moat is directly below the position where the person will let go of the rope. The designer runs several tests in which the rope has different lengths and moves the platform such that the rope is always initially horizontal. The designer notices that the person cannot land on the other side if the length L is very short. The designer also notices that the person also cannot land on the other side if the length L is very close to the height H.

Assume the size of the person is much smaller than the lengths L and H. Let D represent the horizontal distance from below the release point to where the person lands.

Required:
a. Why does the person land in the moat if the rope's length is very short?
b. Why does the person land in the moat if the length is nearly the same as the height of the platform?

Answers

Answer:

* when L → H    chord too long

in this case we see that the speed to cross the well grows a lot (it goes towards infinity) therefore we do not have enough speed in the movement to cross

* when L → 0 very short string

         the speed of the platform is very small, so we do not have the minimum required value

        vox = √ (g / (2 (H)) D

Explanation:

For this exercise we are going to solve it using conservation of energy to find the velocity of the body and the launch of projectiles to find the velocity to cross the well.

Let's start with the projectile launch

as the body leaves the vertical its velocity must be horizontal

         x = v₀ₓ t

         y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²

when reaching the ground its height of zero (y = 0) and the initial vertical velocity is zero

         t = √ 2 y₀ / g

we substitute

        x = vox √2y₀ / g

        v₀ₓ = √(g / 2y₀)     x

In the exercise, it tells us that the width of the well is D (x = D) and the initial height is the height of the platform minus the length of the rope (I = H - L)

       v₀ₓ = √(g /(2 (H -L))    D

this is the minimum speed to cross the well.

Now let's use conservation of energy

starting point. On the platform

      [tex]Em_{o}[/tex] = U = m g H

final point. At the bottom of the swing

      Em_{f} = K + U = 1 / 2m v² + m g (H -L)

as there is no friction the mechanical energy is conserved

        Em_{o} = Em_{f}

       m g H = 1 / 2m v² + m g (H -L)

        v = √ (2gL)

let's write our two equations

the minimum speed to cross the well

       v₀ₓ = √ (g /(2 (H -L))    D

the speed at the bottom of the oscillatory motion

       v = √ (2g L)

we analyze the extreme cases

* when L → H    chord too long

in this case we see that the speed to cross the well grows a lot (it goes towards infinity) therefore we do not have enough speed in the movement to cross

* when L → 0 very short string

         the speed of the platform is very small, so we do not have the minimum required value

        vox = √ (g / (2 (H)) D

From this analysis we see that there is a range of lengths that allows us to have the necessary speeds to cross the well

      V₀ₓ = v

      g / (2 (H -L) D² = 2g L

       4 L (H- L) = D²

        4 H L - 4 L2 - D² = 0

        L² - H L - D² / 4 = 0

let's solve the quadratic equation

      L = [H ± √ (H2-D2)] / 2

we assume that H> D

       L = ½ H [1 + - RA (1 - (D / H) 2)]

The two values ​​of La give the range of values ​​for which the two speeds are equal

A) The person lands in the moat if the rope's length is very short because :

The speed of the platform is less than the required minimum speed

B) The person lands in the moat if the rope length is similar to the height of the platform because :

The speed required to cross the moat approaches infinity

Following the assumptions;

size of the person is much smaller than L and H

D = horizontal distance

The conditions that will cause the person to land on the moatThe person will land in the moat when the rope's length is very short because as the rope reduces in length the speed reduces as well such that the speed of the platform goes below the required minimum speed which will enable the person cross over.  while As the magnitude of the length tends towards the same magnitude of the height the speed required to cross the moat increases towards infinity and this speed cannot be attained by the person hence he will land in the moat.

Hence we can conclude that The person lands in the moat if the rope's length is very short because The speed of the platform is less than the required minimum speed  and  The person lands in the moat if the rope length is similar to the height of the platform because,the speed required to cross the moat approaches infinity.

Learn more about obstacle course : https://brainly.com/question/241926

waht is science
wjwissbsskdldmndndnd​

Answers

Answer:

the intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment.

Explanation:

HELP PLS!!

In a full/angled projectile, Vty is equal to the inverse of viy
O True
O False

Answers

The answer is. False.

What do you mean is a variable velocity and uniform velocity​

Answers

Answer:

Uniformly accelerated rectilinear motion (MRUA), also known as uniformly varied rectilinear motion (MRUV), is one in which a mobile moves along a straight path being subjected to a constant acceleration.

Explanation:

1. What is Ohm"s law?
2. If you placed a negatively charged hairbrush near your hair, what charge would your hair be?
3. You must change a lightbulb and the new lightbulb has a larger resistance. If the voltage of the battery does not change, what happens to the current going through the flashlight?
HELLPPPP

Answers

1. Ohm's law shows the relationship between:

voltagecurrentresistance

Formula: voltage = current x resistance

2. The negative charge on the hairbrush will induce a positive charge on your hair. As a result, your hair is going to be attracted to the hairbrush (and repelled by other strands of hair.)

3. V = IR, so if the resistance of the current increases, and the voltage of the current stays the same, there is as a result, going to be less current.

Best of Regards!

Two particles are separated by 0.38 m and have charges of -6.25x 10 C and 2.91 x 10 C. Use Coulomb's law to predict the force between the particles if the distance is doubled. The equation for Coulomb's law is Fe = g, and the constant, k, equals 9.00 x 10° Nm/C A. -1.13 x 10-6 N OB. 1.13x 106N O C. 2.83 x 10-7 N OD.-2.83x 10N sUBMIT​

Answers

Answer:

I do not understand what you are asking

A charged isolated metal sphere of diameter 12 cm has a potential of 9200 V relative to V = 0 at infinity. Calculate the energy density in the electric field near the surface of the sphere.

Answers

Answer:

0.1 J/m³

Explanation:

We know that

V = k Q / R

We also know that

E = k Q / R²

Joining the two equations together, we have

E = V / R

To solve the question proper, we'd be using the formula

u = 1/2 E• E², substitute for E, we have

u = 1/2 E• (V/R)²

u = 1/2 * 8.85*10^-12 * (9000 / 0.06)²

u = 1/2 * 8.85*10^-12 * 150000²

u = 1/2 * 8.85*10^-12 * 2.25*10^10

u = 1/2 * 0.199125

u = 0.0996

u = 0.1 J/m³

The energy density is 0.1 J/m³

What would be the speed of an object just before hitting the ground if dropped 100 meters?

Answers

We are given:

the initial height of the object (h) = 100 m

initial velocity (u) = 0 m/s

we will let the value of g = 10 m/s/s

Speed of the object just before hitting the ground:

From the third equation of motion:

v² - u² = 2ah     (where v is the final velocity)

replacing the variables, we get:

v² - (0)² = 2(10)(100)

v² = 2000

v = 10√20 = 44.7 m/s

Therefore, the speed of the object just before hitting the ground is 44.7 m/s

color code of electrical resistors​

Answers

Answer:

Tolerance: [tex]\pm 10\%[/tex]

Explanation:

Resistor Color Codes

Resistor Color Coding uses colored bands to quickly identify the resistive value or resistors and its percentage of tolerance.

Since the question does not provide a specific color table, we'll use the table attached below.

The colors of the resistor shown in the question are:

First band: orange

Second band: blue

Third band: brown

Fourth band: silver

The colors relate to the following numbers respectively:

3, 6, 10Ω, [tex]\pm 1\%[/tex]

The first two colors form the number 36

The third color is the multiplier: 36*10Ω = 360Ω

And the fourth color is the tolerance or the possible variation of the resistance [tex]\pm 1\%[/tex]

Resistance: 360Ω

Tolerance: [tex]\pm 10\%[/tex]

In which medium does the light move faster, water or diamond?

Answers

Answer:Light moves faster in after than that of diamonds

If an object is moving with a constant velocity to the right, what direction is the net force.

Group of answer choices

A.To the right

B.To the left

C.Net force is 0

D.Not enough information

Answers

Answer:

At constant velocity, his weight equals the force of friction. In other words, there is no net force. If however, he loosens his grip and decreases the friction force, he will accelerate downward.

Explanation:

An object is rolled at 12 m/s down a table. It stops
after 15s. What was its acceleration?
Variables:
Equation and Solve:

Answers

Answer:

We are given:

initial velocity (u) = 12 m/s

final velocity (v) = 0 m/s

time taken (t) = 15 seconds

acceleration (a) = a m/s²

Solving for acceleration:

from the first equation of motion

v = u + at

replacing the variables

0 = 12 + (a)(15)

0 = 15a + 12

a = -12 / 15

a = -4 / 5 m/s²

If we assume their arms are each 0.90 m long and their individual masses are 65.0 kg , how hard are they pulling on one another

Answers

Complete Question

On an ice rink two skaters of equal mass grab hands and spin in a mutual circle once every 2.7 s .

If we assume their arms are each 0.90 m long and their individual masses are 65.0 kg , how hard are they pulling on one another?

Answer:

The force is  [tex]F  = 316.8 \  N[/tex]

Explanation:

From the question we are told that

    The period is  T   =  2.7 s

    The radius of the circle formed by their arms  is  r =  0.90 m

      Their individual  mass is  [tex]m =  65.0 \  kg[/tex]

Generally their angular velocity is mathematically represented as

      [tex]w = \frac{2 \pi}{T}[/tex]

=>    [tex]w = \frac{2 *  3.142 }{2.7}[/tex]

=>  [tex]w =2.327 \ rad/ s [/tex]

Generally the pulling force is mathematically represented as

      [tex]F  = m *  w ^2 *  r[/tex]

=>   [tex]F  = 65 *  2.327^2 *  0.90[/tex]

=>   [tex]F  = 316.8 \  N[/tex]

At time t = 0 the point at x = 0 has velocity v0 and displacement y0. The phase constant φ is given by tanφ =:

Answers

This question is incomplete, the complete question is;

The displacement of a string carrying a traveling sinusoidal wave is given by y(x,t)=ymsin(kx - ωt -φ) .

At time t = 0, the point at x = 0 has velocity v₀ and displacement y₀.

The phase constant φ is given by tanφ =:

A) ωv₀ /y₀    

B) ωv₀ y₀  

C) v₀ /ωy₀  

D) y₀ /ωv₀      

E) ωy₀ /v₀

Answer:

E) ωy₀ /v₀

Explanation:

Given that;

displacement of a wave is; y(x,t) = ym sin (kx - ωt - φ)

we differentiate the given equation with respect to time

d/dt (y(x,t)) = d/dt(ym sin(kx - ωt - φ) )

v(0,0)) = -ym ωcos (k(0) - ω(0) - φ) )

v₀ = -ym ωcos (-φ)  ......... lets leave thisas equ 1

At t = 0, x = 0

the displacement of the wave is

y(0,0) = ym sin (k(0) - ω(0) - φ)

y₀ = ym sin(-φ) ..............let this be equ 2

y₀/v₀ = (ym sin(-φ)) / (-ym ωcos (-φ)) = ( -ym sin(φ)) / (-ym ωcos (φ))

(tanφ)/ω = y₀/v₀

tanφ = y₀ω/v₀

therefore the required value is y₀ω/v₀

option (E).  

I WILL GIVE BRAINLIEST
In which of the following locations would most likely find parenchyma cells? Leaves roots flowers bark

Answers

Answer:

I would guess its leaves

Answer:

Leaves

Explanation:

what happens to the temperature of water as time elapses? IF YOU ANSWER IT I WILL MARK YOU A BRAINLEST ANSWER​

Answers

Answer:

I think it will get colder

Explanation:

Answer:

The water molecules go faster as it gets colder they go slower

Explanation:

trust me thats the answer

The horizontal surface on which the block slides is frictionless. The speed of the block before it touches the spring is 6.0 m/s. How fast is the block moving at the instant the spring has been compressed 15 cm

Answers

Answer:

The final speed of the block moving at the instant the spring has been compressed is approximately 3.674 meters per second.

Explanation:

The spring constant is 2000 newtons per meter. Let consider the spring-block system, from Principle of Energy Conservation we can represent it by the following model:

[tex]U_{k,1}+K_{1} = U_{k,2}+K_{2}[/tex]

[tex]K_{2} = K_{1}+(U_{k,1}-U_{k,2})[/tex] (Eq. 1)

Where:

[tex]K_{1}[/tex], [tex]K_{2}[/tex] - Initial and final kinetic energies of the block, measured in joules.

[tex]U_{k,1}[/tex], [tex]U_{k,2}[/tex] - Initial and final elastic potential energy, measured in joules.

And we expand the equation above by definitions of elastic potential energy and kinetic energy:

[tex]\frac{1}{2}\cdot m \cdot v_{2}^{2} = \frac{1}{2}\cdot m\cdot v_{1}^{2} + \frac{1}{2}\cdot k\cdot (x_{1}^{2}-x_{2}^{2})[/tex]

[tex]v_{2} = \sqrt{v_{1}^{2}+\frac{k}{m}\cdot (x_{1}^{2}-x_{2}^{2}) }[/tex] (Eq. 1b)

Where:

[tex]m[/tex] - Mass of the block, measured in kilograms.

[tex]k[/tex] - Spring constant, measured in newtons per meter.

[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Initial and final velocities of the block, measured in meters per second.

[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final positions of spring, measured in meters.

If we know that [tex]v_{1} = 6\,\frac{m}{s}[/tex], [tex]k = 2000\,\frac{N}{m}[/tex], [tex]m = 2\,kg[/tex], [tex]x_{1} = 0\,m[/tex] and [tex]x_{2} = 0.15\,m[/tex], the final speed of the block moving at the instant the spring has been compressed is:

[tex]v_{2} = \sqrt{\left(6\,\frac{m}{s} \right)^{2}+\left(\frac{2000\,\frac{N}{m} }{2\,kg} \right)\cdot [(0\,m)^{2}-(0.15\,m)^{2}]}[/tex]

[tex]v_{2}\approx 3.674\,\frac{m}{s}[/tex]

The final speed of the block moving at the instant the spring has been compressed is approximately 3.674 meters per second.

If vector A = 6i - 2j + 3k, determine
(a) A vector in the same direction as A with magnitude 2A
(b) A unit vector in the direction of A
(c) a vector opposite to A with magnitude of 4 m​

Answers

Answer:

(a) [tex]2\vec A=12\hat i-4\hat j+6\hat k[/tex]

(b) [tex]\displaystyle \vec{U_A}=12/7\hat i-4/7\hat j+6/7\hat k[/tex]

(c) [tex]-4\vec{U_A}=-48/7\hat i+16/7\hat j-24/7\hat k[/tex]

Explanation:

Vectors

Given a vector

[tex]\vec A=6\hat i-2\hat j+3\hat k[/tex]

We must determine the following:

a) A vector in the same direction as A with double magnitude 2A.

If the vector goes in the same direction but has a different magnitude, we only need to multiply each component by a common factor, in this case, by 2. Thus, the required vector is:

[tex]2\vec A=12\hat i-4\hat j+6\hat k[/tex]

b) A unit vector in the same direction of A.

The unit vector needs to compute the magnitude of the vector:

[tex]\mid A\mid=\sqrt{6^2+2^2+3^2}[/tex]

[tex]\mid A\mid=\sqrt{36+4+9}=\sqrt{49}=7[/tex]

[tex]\mid A\mid=7[/tex]

The unit vector is:

[tex]\displaystyle \vec{U_A}=\frac{\vec A}{\mid \vec A\mid}[/tex]

[tex]\displaystyle \vec{U_A}=\frac{12\hat i-4\hat j+6\hat k}{7}[/tex]

[tex]\displaystyle \vec{U_A}=12/7\hat i-4/7\hat j+6/7\hat k[/tex]

c) A vector opposite to A with magnitude 4 m. We assume the original vector is also expressed in m.

The opposite vector to A is obtained simply by multiplying the unit vector by -1. To make its magnitude equal to 4, also multiply by 4. In all, we multiply the unit vector by -4:

[tex]-4\vec{U_A}=-4(12/7\hat i-4/7\hat j+6/7\hat k)[/tex]

[tex]-4\vec{U_A}=-48/7\hat i+16/7\hat j-24/7\hat k[/tex]

Can someone please explain how to find the acceleration of the hanging mass?

Answers

Answer:

Acceleration = m/s²

Explanation:

T= Newtons compared to the weight W = Newtons for the hanging mass. If the weight of the hanging mass is less than the frictional resistance force acting on the mass on the table, then the acceleration will be zero.

A car traveling at 27 m/s slams on its brakes to come to a stop. It decelerates at a rate of 8 m/s2 . What is the stopping distance of the car?

Answers

v² - u² = 2 ax

where u = initial velocity (27 m/s), v = final velocity (0), a = acceleration (-8 m/s², taken to be negative because we take direction of movement to be positive), and ∆x = stopping distance.

So

0² - (27 m/s)² = 2 (-8 m/s²) ∆x

x = (27 m/s)² / (16 m/s²)

x ≈ 45.6 m

The stopping distance of car achieved during the braking is of 45.56 m.

Given data:

The initial speed of car is, u = 27 m/s.

The final speed of car is, v = 0 m/s. (Because car comes to stop finally)

The magnitude of deacceleration is, [tex]a = 8\;\rm m/s^{2}[/tex].

In order to find the stopping distance of the car, we need to use the third kinematic equation of motion. Third kinematic equation of motion is the relation between the initial speed, final speed, acceleration and distance covered.

Therefore,

[tex]v^{2}=u^{2}+2(-a)s[/tex]

Here, s is the stopping distance.

Solving as,

[tex]0^{2}=27^{2}+2(-8)s\\\\s = 45.56 \;\rm m[/tex]

Thus, we can conclude that the stopping distance of car achieved during the braking is of 45.56 m.

Learn more about the kinematic equation of motion here:

https://brainly.com/question/11298125

A car is stopped for a traffic signal. When the light turns green, the car accelerates, increasing its speed from zero to 7.63 m/s in 3.94 s. What is the magnitude of the linear impulse experienced by a 73.7 kg passenger in the car during this time? Submit Answer Tries 0/20 What is the average force experienced by the passenger?

Answers

Answer:

1. p = 562.3 kg*m/s

2. F = 142.7 N

Explanation:

1. The linear impulse (p) is given by:

[tex] p = mv [/tex]

Where:

m: is the passenger's mass = 73.7 kg

v: is the speed = 7.63 m/s

[tex] p = mv = 73.7 kg*7.63 m/s = 562.3 kg*m/s [/tex]

Hence, the magnitude of the linear impulse experienced by a passenger is 562.3 kg*m/s.

2. The average force can be calculated using the following equation:

[tex] F = \frac{m(v_{f} - v_{0})}{t} = \frac{73.7 kg(7.63 m/s - 0)}{3.94 s} = 142.7 N [/tex]  

Therefore, the average force experienced by the passenger is 142.7 N.

I hope it helps you!

The bending of rocks due to the compression of tectonic plates is called
Ofaulting
O folding
subduction
plyometrics

Answers

Answer:

Folding

Explanation:

The power that a student generates when walking at a steady pace of vw is the same as when the student is riding a bike at vb = 3vw. The student is going to travel a distance d. The energy the student uses when walking is Ew. The energy the student uses when biking is Eb. The ratio EwEb is

Answers

Answer:

3

Explanation:

What function do you think a flower that can stay warm at night might have for a plant?

Answers

Answer:

it keeps it growing because if it stays warm and yuh put it by a plant that needs sun yk

Explanation:

A flower of a plant that can stay warm at night as it keeps it growing.

What are the function of different parts of plant ?

The roots are the underground part of the plant which plays a major role in pulling the water and minerals,  expands within the ground  for better water absorption, anchors which helps in creating better stability.

A stem present above the ground bears leaves, fruits plus flowers.  as it distributes the nutrients and minerals to the leaves, shields the plant and assists in asexual dissemination.

leaf is one of the most major parts of a plant as it contain chlorophyll pigment which assists the plants in preparation for food, the veins allow the flowing of nutrients plus water, it has the parts like petiole, leaf base and lamina help in photosynthesis.

Flower is the most bright and beautiful part of the plant show an important role in making food, used in fertilization process , the basic parts are petals, sepals, stamens, and pistil.

For more details  plant,  visit

https://brainly.com/question/1283049

#SPJ2

21. A toy car starts from rest and begins to accelerate at 11.0 m/s2. What is the toy
car's final velocity after 6.0 seconds?

Answers

Answer:

Explanation:

Given parameters:

Initial velocity = 0

Acceleration = 11m/s²

Time  = 6s

Unknown:

Final velocity  = ?

Solution:

 From the given parameters, we use one of the appropriate equations of motion to solve this problem.

     V = U + at

V is the final velocity

U is the initial velocity

a is the acceleration due to gravity

t is the time taken

Input the parameters and solve;

     V  = 0 + 11 x6

     V  = 66m/s

The final velocity is 66m/s

Plates slide past one another at____.
A. Subduction zones
B. Transform boundaries
C. Convection currents
D. Divergent boundaries

Answers

Answer:

Transform Boundary

Explanation:

The just slide past each other

Answer:

Transform Boundaries

Explanation:

A 30.0-kgkg box is being pulled across a carpeted floor by a horizontal force of 230 NN , against a friction force of 210 NN . What is the acceleration of the box?

Answers

Answer:

The acceleration of the box is 0.67 m/s²

Explanation:

Given that,

Mass of box = 30.0 kg

Horizontal force = 230 N

Friction force = 210 N

We need to calculate the acceleration of the box

Using balance equation

[tex]F-f_{k}=ma[/tex]

[tex]a=\dfrac{F-f_{k}}{m}[/tex]

Where, F = horizontal force

[tex]f_{k}[/tex] =frictional force

m= mass of box

a = acceleration

Put the value into the formula

[tex]a=\dfrac{230-210}{30}[/tex]

[tex]a=0.67\ m/s^2[/tex]

Hence, The acceleration of the box is 0.67 m/s²

how much min the basketball 1 player play​

Answers

Answer:

A professional basketball game depends on the association presiding over the game. An NBA game lasts for 48 minutes whereas FIBA games take 40 minutes. The total time taken to play for any specialized game is over 2 hours 15 minutes. The time includes the time disruptions like fouls, timeouts, and breaks.

I hope it helps you...

Other Questions
Super Mario and Bowser Jr. are racing around a track when Baby Bowser launches a green shell at Mario, bringing him to rest. Bowser Jr. then passes Mario at his top speed of 30 blocks/h, moving down the track in a straight line. Mario quickly accelerates and reaches his top speed of 40 blocks/h in order to catch back up and pass Bowser Jr., but by this point he has opened up a 75 block head start down the track. Mario world measure distance using the units of blocks, with 1 block = 0.47 m.a) What are Mario and Bowser Jr.'s speeds in m/s?Assuming both Mario and Bowser Jr. race to the finish in a straight line at their top speeds,b) How long does it take for Mario to catch Bowser Jr.?c) How far down the track is Mario from the point at which he reaches his top speed? Identify the type of figurative language bolded in each quote.". . . shimmied up the trunk of the pear tree and immediately got stuck to it as if with glue.""With a heavy sigh like wind through a tomb.""Medicines are like magic potions." You can save one object before your house burns down. What is it? What makes that object important to you? Please elaborate and 5 sentences or more.I WILL GIVE BRAINLIST People in the _________ tribe were divided into two groups: the Sky People and the Earth People. People in the A. Quapaw B. Pawnee C. Kiowa Apache D. Osage What do you think the theme is of "The Lottery" ? Refer to Mesmerized: How Ben Franklin Solved a Mystery that Baffled All of France for a complete version of this text.Part AWhy does Franklin think he has to help the king investigate Dr. Mesmer?A.He believes he must repay the king.B.He thinks it is the only way to prove Dr. Mesmers powers are real.C.He wants the king to reward him.D.He worries that Dr. Mesmer will become more popular than he is.Question 2Part BWhich detail from Mesmerized best supports the answer to Part A?A.Even Ben's own grandson wrote to him from England to say that he had joined Mesmer's secret society."B.The king had already sent aid to the struggling colonists, so Ben owed him a very big favor.C..The king appointed a group of scientists and doctors to help Ben.D.And yet the French treated Ben like a celebrity. Poets wrote verses in his honor. Solve for x. Perimeter = 126 meters Why do you think it was a good thing that the Union won the Civil War?(Not advantages) When two species are forced to interact in a particular environment, how wouldrelationships of competition, predation, and mutualism affect the two populations? The circle shown has a radius of 12 mm. What is the circumference of the circle? (WILL MARK BRAINLIEST) The graph of f(x) = 2 + 3 is translated to producethe graph of g(x) = (x + 2)+ 3. In which directionwas the graph of f translated?A. upB. downC. leftD. right Based on the data in the graph, how are cyanobacteria responsible for the rise in atmospheric oxygen? State your claim, then make sure to use evidence from biological processes and data from the graph to support your claim. The colonial name for British soldiers? PLEASE HELP!! HONESTLY JUST MAKE SOWMTHING UP DUE TMR WORTH 40 POINTS !!!!! Identify and describe 6 different camera angles What's the dense connective tissue that surrounds most organs called? A car uses 5 gallons of gasoline to travel 97.5 miles. At this rate, how many miles can the car travel using 13 gallons of gasoline? The story "Damon and Pythias" and the poem "Friendship" both approach the topic of friendship.Which statement best explains how this topic is treated in both texts? In "Damon and Pythias" two friends disappoint each other, and in "Friendship" friends are honest with each other. In "Damon and Pythias" two friends will do anything for each other, and in "Friendship" courage is gained through friendship. In "Damon and Pythias" two friends are discouraged by family members, and in "Friendship" a friend does not need to be perfect to be a good friend. In "Damon and Pythias" two friends have a profound effect on others, and in "Friendship" the death of a friend is compared to dying. Fill in the blank with the Spanish equivalent of the word in parentheses:Mi maestra es (Costa Rican).Costa RicanocostarricenseCosta Rica Draw the triangle ABC on a coordinate plane given the following points A (0,0) B (4,-10) C (10,-4) draw a picture of ur triangle