Express tan R as a fraction in simplest terms.

Express Tan R As A Fraction In Simplest Terms.

Answers

Answer 1

Answer:

RS = 24, so tan R = 18/24 = 3/4


Related Questions

Results of a poll evaluating support for drilling for oil and natural gas off the coast of California were introduced in Exercise 6.29
College Grad Yes No
Support 154 132
Oppose
180 126
Dont Know 104 131
Total 438 389
(a) What percent of college graduates and what percent of the non-college graduates in this sample support drilling for oil and natural gas off the Coast of California?

Answers

In this sample, 154 college graduates and 132 non-college graduates support drilling for oil and natural gas off the coast of California. Therefore, the percentage of college graduates who support drilling is (154/438) x 100 = 35.16%, while the percentage of non-college graduates who support drilling is (132/389) x 100 = 33.95%.

It is worth noting that college graduates have a larger proportion of support than non-college graduates, although the difference is not statistically significant. The percentages of those who oppose and those who are unsure, on the other hand, differ dramatically between the two categories. In this sample, 41.1% of college graduates were opposed to drilling, compared to 32.4% of non-college graduates, and 23.7% were uncertain, compared to 33.6% of non-college graduates.

Overall, the evidence reveals that, while there is some difference in beliefs between college graduates and non-college graduates, the differences are not statistically significant. In both categories, the percentages of support, opposition, and undecided are quite identical. It is worth noting, however, that a sizable proportion of both groups (about one-third) are undecided, implying that there is still substantial disagreement and confusion around this subject.

To learn more about Statistics, visit:

https://brainly.com/question/27342429

#SPJ11

given: σ = {a}. what is the minimum pumping length for each of the following languages: {}, {a}, {a, aaaa, aa}, σ∗ , and {ϵ

Answers

The minimum pumping length of {} is any positive integer, of {a} is 1, {a, aaaa, aa}: 1, σ∗: 1 and of {ϵ} is not regular

To find the minimum pumping length for a given language, we need to consider the smallest possible strings in the language and find the smallest length at which we can apply the pumping lemma.

{} (the empty language): There are no strings in the language, so the pumping lemma vacuously holds for any pumping length. The minimum pumping length is any positive integer.

{a}: The smallest string in the language is "a". We can choose the pumping length to be 1, since any substring of "a" of length 1 is still "a". Thus, the minimum pumping length is 1.

{a, aaaa, aa}: The smallest string in the language is "a". We can choose the pumping length to be 1, since any substring of "a" of length 1 is still "a". Thus, the minimum pumping length is 1.

σ∗ (the Kleene closure of σ): Any string over {a} is in the language, including the empty string. We can choose the pumping length to be 1, since any substring of any string in the language of length 1 is still in the language. Thus, the minimum pumping length is 1.

{ϵ} (the language containing only the empty string): The smallest string in the language is the empty string, which has length 0. However, the pumping lemma requires that the pumping length be greater than 0. Since there are no other strings in the language, we cannot satisfy the pumping lemma for any pumping length. Thus, the language {ϵ} is not regular.

For more such questions on Pumping length.

https://brainly.com/question/31386297#

#SPJ11

How many different combinations are pocible:
Ice Cream Flavors: chocolate, vanilla, strawberry
Toppings: fudge, marshmallow
Sprinkles: chocolate, rainbow​

Answers

Answer:

35

Step-by-step explanation:

Suppose a point (x, y) is selected at random from inside the unit circle (circle of radius 1 centered at the origin). Let r.v.R be the distance of the point from the origin. Find the sample space of R, SR Find P(R r) Plot the cdf of R. Specify the type of r.v.R

Answers

The type of r.v.R is a continuous random variable, since its possible values form a continuous interval [0,1].

The sample space of R is the interval [0,1], since the distance from the origin to any point inside the unit circle is between 0 and 1.
To find P(R < r), we need to find the probability that the randomly selected point falls inside a circle of radius r centered at the origin. The area of this circle is πr^2, and the area of the entire unit circle is π, so the probability is P(R < r) = πr^2/π = r^2.
The cdf of R is the function F(r) = P(R ≤ r) = ∫0r 2πx dx / π = r^2, where the integral is taken over the interval [0,r]. This is because the probability that R is less than or equal to r is the same as the probability that the randomly selected point falls inside the circle of radius r centered at the origin, which has area πr^2. The cdf of R is a continuous and increasing function on the interval [0,1].

Learn more about origin here:

https://brainly.com/question/26241870

#SPJ11

There are 100 pupils in a group. The only languages available for the group study are Spanish and Russian. 30 pupils study Spanish. 54 pupils study Russian. 35 pupils study neither Spanish nor Russia. Complete the venn diagram​

Answers

From the Venn diagram, the values of a, b, c and d are11,19,35,35 respectively

What is Venn diagram?

A Venn diagram is an illustration that uses circles to show the relationships among things or finite groups of things. Circles that overlap have a commonality while Circles that do not overlap do not share those traits.

The universal set is ∈ = 100

The languages are

Spanish = 30

Russian = 54

(S∪ R)¹ = 35 = d

a = Spanish only = a-b

30-b = a

Russia only = c-b

54 - b

Therefore, The universal set ∈ is

100 = (a-b) + (b)+ (c-b) +(d)

100 =  30-b + b + 54 - b + 35

100 = 119 - b = 119-100

b= 19

Therefore,

a = 30 -19 =11

b = 19

c = 59 - 19 35

d = 35

Learn more about the Venn diagram on https://brainly.com/question/29301560

#SPJ1

the velocity of a bicycle is given by v(t) = 4t feet per second, where t is the number of seconds after the bike starts moving. how far does the bicycle travel in 3 seconds?

Answers

The bicycle travels 12 feet in 3 seconds.

This can be found by integrating the velocity function v(t) over the interval [0,3]: ∫4t dt = 2t² evaluated at t=3.

The velocity function v(t) gives the rate of change of distance with respect to time, so to find the total distance traveled over a given time interval, we need to integrate v(t) over that interval.

In this case, we want to find the distance traveled in 3 seconds, so we integrate v(t) from t=0 to t=3: ∫4t dt = 2t² evaluated at t=3 gives us the total distance traveled, which is 12 feet. This means that after 3 seconds, the bike has traveled 12 feet from its starting point.

To know more about integrate click on below link:

https://brainly.com/question/30217024#

#SPJ11

parole rapportée c’est quoi

Answers

La parole rapportée est une phrase ou un discours que l'on rapporte à quelqu'un d'autre. Par exemple, si je dis "Jean a dit qu'il allait au cinéma", la phrase "Jean a dit qu'il allait au cinéma" est une parole rapportée.

Question 22
The future value, V, in dollars of an account with a monthly interest rate of i and
deposits on January 1st, February 1st and March 1st is given by the following equation
V = 50(1 + i)² + 100(1 + i) + 150. Which of the following equivalent expressions
contains the future value, as a constant or coefficient, for a monthly interest rate of
i = 0.1?
a. 50(i + 0.1)² + 190(i + 0.1) + 280.5
b. 50i² + 200i + 300
c.
50(i-0.1)² + 210(i - 0.1) + 320.5
d. 50(i + 2)² + 100

Answers

Answer:

c. 50(i-0.1)² + 210(i - 0.1) + 320.5.

Step-by-step explanation:

To find the equivalent expression that contains the future value for a monthly interest rate of i = 0.1, we simply substitute i = 0.1 into the equation V = 50(1 + i)² + 100(1 + i) + 150 and simplify.

V = 50(1 + 0.1)² + 100(1 + 0.1) + 150

V = 50(1.1)² + 100(1.1) + 150

V = 50(1.21) + 110 + 150

V = 60.5 + 110 + 150

V = 320.5

Therefore, the expression that contains the future value for a monthly interest rate of i = 0.1 is c. 50(i-0.1)² + 210(i - 0.1) + 320.5.

The domain and target set of functions f and g is R. The functions are defined as: f(x) = 2.r +3 g(x) = 5x +7 (a) fog? (b) gof? (c) (fog)^-l? (d) f^-1 o g^-1 (e) g^1 o f^-1

Answers

The problem involves finding the compositions of two functions f and g, their inverse functions, and the composition of the inverse functions. The solution demonstrates how to apply these concepts.

To find the compositions of functions and their inverse functions.

Using the given definitions of f and g.

We find their compositions and their inverse functions. Then we apply these results to find the compositions of inverse functions.

(a) fog: [tex]fog(x) = f(g(x)) = f(5x+7) = 2(5x+7) + 3 = 10x + 17[/tex]

(b) gof: [tex]gof(x) = g(f(x)) = g(2x+3) = 5(2x+3) + 7 = 10x + 22[/tex]

(c) [tex](fog)^-1:[/tex]

We first find fog(x) and then solve for x: [tex]fog(x) = 10x + 17[/tex]

[tex]x = (fog(x) - 17)/10[/tex]

[tex](fog)^-1(x) = (x - 17)/10[/tex]

[tex](d) f^-1 o g^-1:[/tex]

[tex]f^-1(x) = (x - 3)/2[/tex]

[tex]g^-1(x) = (x - 7)/5[/tex]

[tex](f^-1 o g^-1)(x) = f^-1(g^-1(x)) = f^-1((x-7)/5)[/tex] = [tex][(x-7)/5 - 3]/2 = (x-23)/10[/tex]

(e)[tex]g^1 o f^-1:[/tex] [tex]g^1(x) = (x-7)/5[/tex]

[tex](g^1 o f^-1)(x) = g^1(f^-1(x))[/tex]

=[tex]g^1((x-3)/2) = 5((x-3)/2) + 7[/tex]

=[tex](5x+2)/2[/tex]

Overall, the problem requires a solid understanding of function composition, inverse functions, and basic algebraic manipulation.

To learn more about inverse functions, visit here

https://brainly.com/question/2541698

#SPJ4

Find the shortest distance, d, from the point (3, 0, −2) to the plane x + y + z = 2.

Answers

The shortest distance from the point (3, 0, −2) to the plane x + y + z = 2 is √(3) or approximately 1.732 units.

To find the shortest distance, d, from the point (3, 0, −2) to the plane x + y + z = 2, we need to use the formula for the distance between a point and a plane.

First, we need to find the normal vector of the plane. The coefficients of x, y, and z in the plane equation (1, 1, 1) form the normal vector (since the plane is perpendicular to this vector).

Next, we can use the point-to-plane distance formula:

d = |(ax + by + cz - d) / √(a² + b² + c²)|

where (a, b, c) is the normal vector of the plane, (x, y, z) is the coordinates of the point, and d is the constant term in the plane equation.

Plugging in the values, we get:

d = |(1(3) + 1(0) + 1(-2) - 2) / √(1² + 1² + 1²)|

d = |(1 + 0 - 4) / √(3)|

d = |-3 / √(3)|

d = |-√(3)|

Therefore, the shortest distance from the point (3, 0, −2) to the plane x + y + z = 2 is √(3) or approximately 1.732 units.

To learn more about shortest distance here:

brainly.com/question/31136574#

#SPJ11

What is the x-coordinate of the vertex of the parabola whose equation is y = 3x2 + 9x?

A. -3
B. -[tex]\frac{2}{3}[/tex]
C. -1 [tex]\frac{1}{2}[/tex]

Answers

The x-coordinate of the vertex of the parabola whose equation is given would be -3/2. Option C.

x-coordinate calculation

To find the x-coordinate of the vertex of the parabola, we need to use the formula:

x = -b/2awhere a and b are the coefficients of the quadratic equation in standard form (ax^2 + bx + c).

In this case, a = 3 and b = 9, so:

x = -9/(2*3) = -3/2

Therefore, the x-coordinate of the vertex of the parabola is -3/2.

More on x-coordinate can be found here: https://brainly.com/question/16634867

#SPJ1

The x-coordinate of the vertex of the parabola whose equation is given would be -3/2. Option C.

x-coordinate calculation

To find the x-coordinate of the vertex of the parabola, we need to use the formula:

x = -b/2awhere a and b are the coefficients of the quadratic equation in standard form (ax^2 + bx + c).

In this case, a = 3 and b = 9, so:

x = -9/(2*3) = -3/2

Therefore, the x-coordinate of the vertex of the parabola is -3/2.

More on x-coordinate can be found here: https://brainly.com/question/16634867

#SPJ1

Since 1980, the population of Trenton, NJ, has been decreasing at a rate of 2.72% per year. The rate of change of the city's population Pt years after 1980, is given by: = -0.0272P dP de A. (4 pts) in 1980 the population of Trenton was 92,124. Write an exponential function that models this situation.

Answers

The exponential function that models the population of Trenton, NJ since 1980 is: P(t) = 92124 * [tex](1-0.0272)^t[/tex]

1. The initial population in 1980 is given as 92,124.


2. The rate of decrease is 2.72% or 0.0272 in decimal form.


3. Since the population is decreasing, we subtract the rate from 1 (1 - 0.0272 = 0.9728).


4. The exponential function is written in the form P(t) = P₀ * [tex](1 +r)^t[/tex] , where P₀ is the initial population, r is the rate of change, and t is the number of years after 1980.


5. In this case, P₀ = 92124, r = -0.0272, and we want to find the population at time t.


6. Therefore, the exponential function that models this situation is P(t) = 92124 * [tex](0.9728)^t[/tex] .

To know more about exponential function click on below link:

https://brainly.com/question/14355665#

#SPJ11

Chris is covering a window with a decorative adhesive film to filter light. The film cost $2.35 per square root. How much will the film cost?

Answers

The cost of the film for the whole area of the figure is $73.6.

Given that,

Chris is covering a window with a decorative adhesive film to filter light.

The figure is a window in the shape of a parallelogram.

We have to find the area of the figure.

Area of parallelogram = Base × Height

Area = 8 × 4 = 32 feet²

Cost for the film per square foot = $2.3

Cost of the film for 32 square foot = 32 × $2.3 = $73.6

Hence the cost of the film is $73.6.

Learn more about Area here :

https://brainly.com/question/11952845

#SPJ1

Explain how to plot y=-x+3 on a graph

Answers

1. Identify the linear equation. y = mx + b
2. Take (b) and plot it on the y axis. Since b is a positive 3, that means you plot a positive 3 on the y axis. This will be the number that your line crosses the y axis on.
3. Take (mx) and plot it in correlation to (b). mx = -x also known as -1. So, from +3 on the y axis, move once to the left and once down. Your coordinate should land on (2, 1).

From here on out, keep moving -1 on the y axis and +1 on the x axis. The ongoing coordinates should look something like (1, 2)(0, 3)(-1, 4) and so on.

Can somebody help me with this? (Sin,Cos,Tan)

Answers

A=46° because 44+90=134, 180-134=46

a=22 because tangent ratio : tan(46)=a/21 so 21tan(46)=a=22 (to nearest tenth)

c=30 because Pythagoras theorem : 22^2 + 21^2 = c^2 = 925 and square root of that = 30 (rounded to nearest tenth)

20 percent less than 120 is one-third more
than what number?

Answers

The number which a value, 20 percent less than 120 is one-third more than is 72

What is a percentage?

A percentage is an expression of the ratio between quantities, expressed as a fraction with a denominator of 100.

The quantity 20 percent less than 120 can be expressed as follows;

20 percent less than 120 = ((100 - 20)/100) × 120 = 96

One-third more than a number = The number + (The number)/3

Let x represent the number, we get;

One-third more than the number = x + x/3

x + x/3 = 96

x·(1 + 1/3) = 96

4·x/3 = 96

x = 96 × 3/4 = 72

The number, x = 72

Therefore, 20 percent less than 120 is one-third more than 72

Learn more on percentages here: https://brainly.com/question/30874602

#SPJ1

Please guys, I need help with this. Find tan A. If necessary, write your answer as a fraction.

Answers

Answer:

tanA = [tex]\frac{55}{48}[/tex]

Step-by-step explanation:

tanA = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{55}{48}[/tex]

Calculate the probability of x ≤ 8 successes in n = 10 trials of a binomial experiment with probability of success p = 0.6. a. 0.121 b. 0.011 c. 0.954 d. 0.167 Week 1 Assignment 3 Report a problem Calculate the probability of x ≥ 10 successes in n = 30 trials of a binomial experiment with probability of success p = 0.4. a. 0.115 b. 0.291 c. 0.824 d. 0.569 Report a problem Week 1 Assignment 31

Answers

The probability of x ≤ 8 successes in 10 trials of a binomial experiment with probability of success p = 0.6 is option (c) 0.954.

We can use the cumulative distribution function (CDF) of the binomial distribution to calculate the probability of getting x ≤ 8 successes in 10 trials with a probability of success p = 0.6.

The CDF gives the probability of getting at most x successes in n trials, and is given by the formula

F(x) = Σi=0 to x (n choose i) p^i (1-p)^(n-i)

where (n choose i) represents the binomial coefficient, and is given by

(n choose i) = n! / (i! (n-i)!)

Plugging in the values, we get

F(8) = Σi=0 to 8 (10 choose i) 0.6^i (1-0.6)^(10-i)

Using a calculator or a software program, we can calculate this as

F(8) = 0.9544

So the probability of getting x ≤ 8 successes is 0.9544.

Therefore, the answer is (c) 0.954.

Learn more about probability here

brainly.com/question/11234923

#SPJ4

1/10 ÷ 8



Could someone help me with this

Answers

1/80 is the answer for your question
1/80 is the answer for your question

Problem 6-33 Consider a system having four components with reliabilities through time t of: (1) 0.80 (2) 0.66(3) 0.78 (4) 0.89

Answers

The overall reliability of the system through time t is approximately 0.370.

You have a system with four components and their reliabilities through time t are given as follows:

1. Component 1: 0.80
2. Component 2: 0.66
3. Component 3: 0.78
4. Component 4: 0.89

To find the overall reliability of the system, you'll need to multiply the reliabilities of each individual component:

Overall Reliability = Component 1 Reliability × Component 2 Reliability × Component 3 Reliability × Component 4 Reliability

Step-by-step calculation:

Overall Reliability = 0.80 × 0.66 × 0.78 × 0.89

Now, multiply the given reliabilities:

Overall Reliability ≈ 0.370

So, the overall reliability of the system through time t is approximately 0.370.

visit here to learn more about reliability:

brainly.com/question/30154360

#SPJ11

which of the following functions has an amplitude of 3 and a phase shift of π/2? a) f(x) = -3 cos(2x - π) + 4. b) g(x) = 3cos(2x + π) -1. c) h(x) = 3 cos (2x - π/2) + 3. d) j(x) = -2cos(2x + π/2) + 3

Answers

The function with an amplitude of 3 and a phase shift of π/2 is h(x) = 3 cos (2x - π/2) + 3.

The amplitude of a function is the distance between the maximum and minimum values of the function, divided by 2. The phase shift of a function is the horizontal shift of the function from the standard position,

(y = cos(x) or y = sin(x)).
To find the function with an amplitude of 3 and a phase shift of π/2, we need to look for a function that has a coefficient of 3 on the cosine term and a horizontal shift of π/2.
Looking at the given options, we can eliminate option a) because it has a coefficient of -3 on the cosine term, which means that its amplitude is 3 but it is inverted.

Option b) has a coefficient of 3 on the cosine term but it has a phase shift of -π/2, which means it is shifted to the left instead of to the right. Option d) has a phase shift of π/2, but it has a coefficient of -2 on the cosine term, which means its amplitude is 2 and not 3.
A*cos(B( x - C)) + D

Where A is the amplitude, B affects the period, C is the phase shift, and D is the vertical shift.

f(x) = -3 cos(2x - π) + 4

Amplitude: |-3| = 3

Phase shift: π (not π/2) b) g(x) = 3cos(2x + π) -1

Amplitude: |3| = 3

Phase shift: -π (not π/2) c) h(x) = 3 cos (2x - π/2) + 3

Amplitude: |3| = 3

Phase shift: π/2 d) j(x) = -2cos(2x + π/2) + 3200

Amplitude: |-2| = 2 (not 3)

Phase shift: -π/2
Therefore, the only option left is c) h(x) = 3 cos (2x - π/2) + 3. This function has a coefficient of 3 on the cosine term and a horizontal shift of π/2, which means it has an amplitude of 3 and a phase shift of π/2.
For more questions related to amplitude:

https://brainly.com/question/8662436

#SPJ11

A school is arranging a field trip to the zoo. The school spends 656.26 dollars on passes for 36 students and 2 teachers. The school also spends 348.48 dollars on lunch for just the students. How much money was spent on a pass and lunch for each student?

Answers

Answer:

26.95

Step-by-step explanation:

pass =  656.26 = (36 s + 2t) so 17.27 per person assuming teacher & student same price.

lunch = 348.48/36 =9.68/student

pass and lunch = 9.68 + 17.27 =26.95

Find the tangential and normal components of the acceleration vector. r(t) = ti + t^2 j + 3tK a_T = a_N =

Answers

The tangential component of the acceleration vector is (4t / (1 + 4t² + 9)[tex]^{1/2}[/tex])i + (8t²/ (1 + 4t² + 9)[tex]^{1/2}[/tex])j + (12t / (1 + 4t² + 9)[tex]^{1/2}[/tex])k, and the normal component of the acceleration vector is -4t / (1 + 4t² + 9)[tex]^{1/2}[/tex] * i + (2 - 8t² / (1 + 4t² + 9)[tex]^{1/2}[/tex])j - 12t / (1 + 4t² + 9)[tex]^{1/2}[/tex] * k.

How to find the tangential and normal components of the acceleration vector?

To find the tangential and normal components of the acceleration vector, we first need to find the acceleration vector itself by taking the second derivative of the position vector r(t):

r(t) = ti + [tex]t^{2j}[/tex] + 3tk

v(t) = dr/dt = i + 2tj + 3k

a(t) = dv/dt = 2j

The acceleration vector is a(t) = 2j. This means that the acceleration is entirely in the y-direction, and there is no acceleration in the x- or z-directions.

The tangential component of the acceleration vector, a_T, is the component of the acceleration vector that is parallel to the velocity vector v(t). Since the velocity vector is i + 2tj + 3k and the acceleration vector is 2j, the tangential component is:

a_T = (a(t) · v(t) / ||v(t)||[tex]^{2}[/tex]) * v(t) = (0 + 4t + 0) / [tex](1 + 4t^{2} + 9)^{1/2}[/tex] * (i + 2tj + 3k)

Simplifying this expression, we get:

a_T = (4t / [tex](1 + 4t^{2} + 9 ^{1/2} )[/tex]i + (8t^2 / (1 + 4t^2 + 9)^(1/2))j + (12t / (1 + 4t^2 + 9)[tex]^{1/2}[/tex])k

The normal component of the acceleration vector, a_N, is the component of the acceleration vector that is perpendicular to the velocity vector. Since the acceleration vector is entirely in the y-direction, the normal component is:

a_N = a(t) - a_T = -4t / (1 + 4t² + 9)[tex]^{1/2}[/tex]* i + (2 - 8t² / (1 + 4t²+ 9)[tex]^{1/2}[/tex])j - 12t / (1 + 4t² + 9)[tex]^{1/2}[/tex]* k

Therefore, the tangential component of the acceleration vector is (4t / (1 + 4t² + 9)[tex]^{1/2}[/tex])i + (8t²/ (1 + 4t² + 9)[tex]^{1/2}[/tex])j + (12t / (1 + 4t² + 9)[tex]^{1/2}[/tex])k, and the normal component of the acceleration vector is -4t / (1 + 4t² + 9)[tex]^{1/2}[/tex] * i + (2 - 8t² / (1 + 4t² + 9)[tex]^{1/2}[/tex])j - 12t / (1 + 4t² + 9)[tex]^{1/2}[/tex] * k.

Learn more about tangential and normal components

brainly.com/question/30029917

#SPJ11

Jim began a 110​-mile bicycle trip to build up stamina for a triathlete competition.​ Unfortunately, his bicycle chain​ broke, so he finished the trip walking. The whole trip took 4 hours. If Jim walks at a rate of 5 miles per hour and rides at 41 miles per​ hour, find the amount of time he spent on the bicycle.

Answers

Answer:

2.5 hours

Step-by-step explanation:

Let's call the time Jim spent on his bike "t", in hours.

We know that the total time of the trip was 4 hours, so the time he spent walking was 4 - t.

We can use the formula:

distance = rate x time

to set up two equations based on the distances traveled while biking and walking:

Distance biked = rate biking x time biking = 41t

Distance walked = rate walking x time walking = 5(4 - t) = 20 - 5t

The total distance of the trip is 110 miles, so:

Distance biked + distance walked = 110

Substituting the equations for distance biked and walked:

41t + 20 - 5t = 110

36t = 90

t = 2.5

So Jim spent 2.5 hours on his bike.

Hope this helps!

Find the Laplace transform of a +bt+c for some constants a, b, and c Exercise 6.1.7: Find the Laplace transform of A cos(t+Bsin(t

Answers

The Laplace transform of a+bt+c is (a/s) + (b/s^2) + (c/s). The Laplace transform of A cos(t+Bsin(t)) is (s/(s^2+B^2)) (A cos(φ) + (B/sin(φ)) A sin(φ)), where φ = arctan(B/s).

For a function f(t), the Laplace transform F(s) is defined as ∫[0, ∞) e^(-st) f(t) dt, where s is a complex number.

To find the Laplace transform of a+bt+c, we use linearity and the Laplace transform of elementary functions:

L{a+bt+c} = L{a} + L{bt} + L{c} = a/s + bL{t} + c/s = a/s + b/s^2 + c/s

Therefore, the Laplace transform of a+bt+c is (a/s) + (b/s^2) + (c/s).

B. To find the Laplace transform of A cos(t+Bsin(t)), we use the following identity:

cos(t + Bsin(t)) = cos(t)cos(Bsin(t)) - sin(t)sin(Bsin(t))

Then, we apply the Laplace transform to both sides and use linearity and the Laplace transform of elementary functions:

L{cos(t + Bsin(t))} = L{cos(t)cos(Bsin(t))} - L{sin(t)sin(Bsin(t))}

Using the formula L{cos(at)} = s/(s^2 + a^2), we get:

L{cos(t + Bsin(t))} = (s/(s^2+B^2)) L{cos(t)} - (s/(s^2+B^2)) L{sin(t)}

Using the formula L{sin(at)} = a/(s^2 + a^2), we get:

L{cos(t + Bsin(t))} = (s/(s^2+B^2)) (1/s) - (B/(s^2+B^2)) (1/s)

Simplifying, we get:

L{cos(t + Bsin(t))} = (s/(s^2+B^2)) (A cos(φ) + (B/sin(φ)) A sin(φ)), where φ = arctan(B/s)

Therefore, the Laplace transform of A cos(t+Bsin(t)) is (s/(s^2+B^2)) (A cos(φ) + (B/sin(φ)) A sin(φ)), where φ = arctan(B/s).

For more questions like Function click the link below:

https://brainly.com/question/16008229

#SPJ11

identify the hydrocarbon that has a molecular ion with an m/zm/z value of 128, a base peak with an m/zm/z value of 43, and significant peaks with m/zm/z values of 57, 71, and 85.

Answers

Based on the information provided, the hydrocarbon that fits these criteria is likely to be octane, with a molecular formula of C8H18. The molecular ion with an m/z value of 128 indicates that the molecule has lost one electron, resulting in a positive charge.

The base peak with an m/z value of 43 is likely due to the fragmentation of a methyl group (CH3) from the parent molecule. The significant peaks with m/z values of 57, 71, and 85 may correspond to other fragment ions resulting from the breakdown of the octane molecule.
Based on the given m/z values, the hydrocarbon you are looking for has a molecular ion with an m/z value of 128, a base peak with an m/z value of 43, and significant peaks with m/z values of 57, 71, and 85. The hydrocarbon is likely an alkane, alkene, or alkyne. To determine the exact compound, further information such as the chemical formula or structure would be needed.

Visit here to learn more about hydrocarbon brainly.com/question/31086333

#SPJ11

change from rectangular to cylindrical coordinates. (let r ≥ 0 and 0 ≤ ≤ 2.) (a) (−5, 5, 5) (b) (−3, 3 3 , 1)

Answers

a) Cylindrical coordinates for point (-5, 5, 5) are (r, θ, z) = (√50, 3π/4, 5).
b) Cylindrical coordinates for point (-3, 3√3, 1) are (r, θ, z) = (6, 5π/6, 1).

How to change from rectangular coordinates (x, y, z) to cylindrical coordinates (r, θ, z)?

We will use the following equations:

1. r = √(x² + y²)
2. θ = arctan(y/x) (note: make sure to take the quadrant into account)
3. z = z (z-coordinate remains the same)

(a) For the point (-5, 5, 5):

1. r = √((-5)² + 5²) = √(25 + 25) = √50
2. θ = arctan(5/-5) = arctan(-1) = 3π/4 (in the 2nd quadrant)
3. z = 5

So, the cylindrical coordinates for point (-5, 5, 5) are (r, θ, z) = (√50, 3π/4, 5).

(b) For the point (-3, 3√3, 1):

1. r = √((-3)² + (3√3)²) = √(9 + 27) = √36 = 6
2. θ = arctan((3√3)/-3) = arctan(-√3) = 5π/6 (in the 2nd quadrant)
3. z = 1

So, the cylindrical coordinates for point (-3, 3√3, 1) are (r, θ, z) = (6, 5π/6, 1).

Learn more about Cylindrical coordinates.

brainly.com/question/31046653

#SPJ11

Pls help (part 2)
Give step by step explanation!

Answers

If the "swimming-pool" for children is built with rectangular-prism and 2 halves of cylinder, then the total volume of pool is 312.64 m³.

From the figure, we observe that the swimming pool is made up of a rectangular prism, and 2 halves of cylinder,

the diameter of the half of cylinder is = 16m ,

So, radius of the half of cylinder is = 16/2 = 8m,

The volume of 2 halves of cylinder is = πr²h,

Substituting the values,

We get,

Volume of 2 halves of cylinder is = π × 8 × 8 × 0.6 ≈ 120.64 m³,

Now, the volume of the rectangular prism is = 20 × 16 × 0.6 = 192 m³,

So, the Volume of the swimming pool is = 192 + 120.64 = 312.64 m³.

Therefore, the total volume of swimming pool is 312.64 m³.

Learn more about Volume here

https://brainly.com/question/28512386

#SPJ1

Find the absolute maximum and absolute minimum values of f on the given interval. f(t) = 7t + 7 cot(t/2), [pi/4, 7pi/4] absolute minimum value absolute maximum value

Answers

The absolute minimum value of given trigonometric-function is 331.9 and absolute maximum value of the same function is 4403.

What is absolute value?

The non-negative value of x or its distance from zero on the number line, regardless of its sign, is the absolute value, modulus, or magnitude denoted by | x | for any real number x. When a function reaches its absolute minimum value, it has reached its lowest conceivable value, and when it reaches its absolute maximum value, it has reached its highest possible value.

Given that the trigonometric function is f(t) = 7t + [tex]7 cot\frac{t}{2}[/tex]

Also given the point at which the function has critical values= [[tex]\frac{\pi }{4} , \frac{7\pi }{2}[/tex] ]

Value of function at [tex]\frac{\pi }{4}[/tex] :

f( [tex]\frac{\pi }{4}[/tex] ) = 7( [tex]\frac{\pi }{4}[/tex] ) + 7 cot([tex]\frac{\pi }{4}.\frac{1}{2}[/tex])

       =[tex]\frac{7\pi }{4}[/tex]       + 7 cot ([tex]\frac{\pi }{8}[/tex])

       =315 + 7 cot 22.5

       =315  + 7(2.414)

       = 315 + 16.898

       =331.898

f( [tex]\frac{\pi }{4}[/tex] ) ≈ 331.9

Value of function at [tex]\frac{7\pi }{2}[/tex] :

f( [tex]\frac{7\pi }{2}[/tex] ) = 7( [tex]\frac{7\pi }{2}[/tex] ) + 7 cot([tex]\frac{7\pi }{2}.\frac{1}{2}[/tex])

        =[tex]\frac{49\pi }{2}[/tex]      + 7 cot ([tex]\frac{7\pi }{4}[/tex])

        =4410 + 7 cot 315

        =4410 + 7(-1)

        =4410-7

        =4403

f( [tex]\frac{7\pi }{2}[/tex] ) =4403

The minimum value=331.9 & maximum value is 4403

To know more about absolute, visit:

https://brainly.com/question/1301718

#SPJ1

In the coordinate plane, the point A(-2,4) is translated to the point A’(-4,3). Under the same translation, the points B(-4,8) and C(-6,2) are translated to B’ and C’, respectively. What are the coordinates of B’ and C’?

Answers

Answer:

B' (-6, 7)

C' ( -8, 1)

Step-by-step explanation:

The rule is

(x,y) → (x -2, y - 1)

A( -2,4) → A' ( -4,3)

To get from A to A', the x value changed by -2 (-2-2 = -4).  The y changed by -1 ( 3-1 = 3)

Helping in the name of Jesus.

Other Questions
create an array of size 10 with the numbers 1-10 in it. output the memory locations of each spot in the array 4x is a solution of the differential equation y' + 4y = 4ex. Show that y A 4e -4x -4x - 4e 5 y' () y' 4y= LHS = +4. RHS, so y is a solution of the differential equation. 5 Following Statesmens are TRUE or FALSE?Allowing at most four philosophers to sit simultaneously prevents deadlock.A critical section object in the user mode needs kernel intervention to ensure mutual exclusion.When the mutex lock is implemented based on a binary semaphore, it should be initialized to be 0.The value of a counting semaphore can range only between 0 and 1.Dispatcher objects in Windows are used for synchronization outside the kernel.A mutex lock is released immediately after entering a critical section.Mutex locks and counting semaphores are essentially the same thing.Semaphore implementation overcomes the busy waiting problem.Petersons solution works on modern computer architectures.The preemptive kernel may be more responsive than non-preemptive kernel.Every object in Java has associated with it a single lock.JAVA provides support for both named and unnamed condition variables.Spinlocks are not appropriate for single-processor systems.CAS-based synchronization is always faster than traditional synchronization.A semaphore has an integer value.The preemptive kernel is more suitable for real-time programming than non-preemptive kernel. A cell that starts with a 2n chromosome number of 12 goes through Mitosis. How many chromosomes are found in each of the two resulting cells after Mitosis is complete?a.)24b.)6c.)4d.)12 The formula for pulse duration is number of cycles in a pulse multiplied by: a. Frequency b. Period c. Wavelength d. Amplitude 17. Write a function which checks whether an arithmetic expression is valid. The expression is made up of three strings. The first and third should be convertible to a valid integer. The second should be an operator ("+", "-", "*", or "/"). There should be no exception when the expression is evaluated. Complete the following file: Zones 2 and 4 you find large amounts of two different microorganisms.4. Zone 2 water is populated by cells with the following characteristics: green cells connected instrands; cell wall is made of peptidoglycan; ester-bonded phospholipids; DNA is not wrappedaround histones. (1 point) Do these characteristics fit any group of microorganisms? Could they be responsible for the green hue of the water? Explain. . You damage the neuronal cell bodies in the midbrain, which function is lost? You lose theability to:- Capture light- Perform phototransduction - Constrict the pupil in bright environments 3 I learnt to drive last year. I had my first driving lesson. in January. I passed my driving test six months later. It tome me 4 Marks drive to London yesterday. He left home at 80 clock and got to London atia it took he -5 linda began looking for a job a long time ago. She got a job last week. It took she 6( write a true sentence about yourself! a solenoid 99cm long has 450 turns and a radius of 3.14 cm. if it carries a current of 3.05 a, find th emagnetic field along the axis at its center Help me find surface area of a net, look at the image. 20 POINTS!!! Amanda made a scale drawing of a theater. The scale she used was 1 inch: 7 feet. The stage is 28 feet wide in real life. How wide is the stage in the drawing?A: 2 inchesB: 4 inchesC: 4 feetD: 2 feetTy for answering! 10 For each neurotransmitter, identify the functional class, and then indicate where the hormone is secreted. Neurotransmitter Functional Class Secretion Site acetylcholine nitric oxide glycine norepinephrine endorphins dopamine GABA serotonin glutamate let x be the 6-point dft of x = [1, 2, 3, 4, 5, 6]. determine the sequence y whose dft y [k] = x[hki6], for k = 0, 1, . . . , 5. For the following combustion reactionCHCHOCHCH(l) + 6O(g) 4CO(g) + 5H(g) H = -2.72 10kJWhen a 12.8-g sample of diethyl ether (molar mass = 74.12 g/mol) is burned, how much energy (in kJ) is released as heat? What is the expected relative integration of multiplets in the 1H-NMR spectrum of 3-chloropentane?Cl|\/\/A. 1:2:2 B. 1:2:3 C. 1:5:5 D. 1:4:6 In Project Management, Parkinson's Law states that:a. the early bird gets the worm.b. ET = (a + 4m + b) / 6.c. work expands to fill the time allotted.d. idle hands are created by slack. Cell signaling and signal transduction lab questions please help!! how do i work out 320.041 - 47.96 geometry used to lead the eye from a specific place on a drawing to a block of text