Under any circumstances, the imaginary number i = √-1. We use i to represent the square root of a negative number because negative numbers cannot have square roots (ex: 2^2 = 4, -2^2 = 4).
So, we have a complex number 2 + i. The absolue value? Simple.
[tex]|2 + i|\\2 + |\sqrt{-1} |\\2 + \sqrt{1} \\2 + 1\\3[/tex]
If you need an explanation, look at it this way. The number cannot exist. Yet let's assume it did exist for a moment. What would be the absolute value of a negative square root if they could exist? Well, it would be the same as the square root of that number's opposite, it's positive counterpart!
So, what is the positive counterpart of -1? That would be 1. What's the square root of 1? 1! So, why don't we eliminate these steps? Instead of assuming √-1 can exist and then finding the absolute value of that, just skip those steps and instead take √1, or just 1.
So finally: |√-1| = 1
can someone please help me with this
Answer:
B
Step-by-step explanation:
given 1 pound = 16 ounces , then
5 pounds = 5 × 16 = 80 ounces
-4(w + 5) + 2w simplify
Answer:
-2w-20
Step-by-step explanation:
How many solutions does 5 + x/3 = x/3 + 6 + x/9
A. Infinitely many solutions
B. Two solutions
C. No solutions
D. One solution
========================================================
Explanation:
A thing that jumps out at me right away is the presence of x/3 on both sides. When subtracting x/3 from both sides, these terms cancel out and we're left with this equation
5 = 6 + (x/9)
Let's say w = x/9. We now have this equation 5 = 6 + w. Subtract 6 from both sides to isolate w and you should get w = -1
Then plug in w = x/9 and solve for x.
w = -1
x/9 = -1
x = 9*(-1)
x = -9
We get exactly one solution and it is x = -9
--------------
Check:
5 + x/3 = x/3 + 6 + x/9
5 + (-9)/3 = (-9)/3 + 6 + (-9)/9
5 - 3 = -3 + 6 - 1
2 = 3 - 1
2 = 2
We get the same thing on both sides, which leads to a true statement. This causes a domino effect to lead the first equation to be true when x = -9. Therefore, the solution is confirmed.
Raman purchased books and stationery items and paid the total amount of rupees 963 if he paid 7% tax what was the net value of the item purchased.
The net value of the items purchased is ₹ 900.
Raman purchased books and stationery items and paid the total amount of rupees 963.
Paid tax = 7%
Let the net value of the items purchased be `x.
VAT = 7%
Selling price = ₹x + (7% of x)
= ₹x+ ₹ ( 7/100 * x)
=₹( x +7 x /100)
= ₹ 107 x /100
But Raman purchased books and stationery items for ₹963.
107x/100 = ₹963
x = 963 x 100/107
x = 900
Hence the answer is the net value of the items purchased is ₹ 900.
To learn more about tax click here https://brainly.com/question/1775528
#SPJ9
Use the diagram to find the measure of angle 2
The measure of angle 2 is 75°
From the question, we have
∠1= 105°
∠2= 180°- 105° (Linear pair)
∠2=75°
Subtraction:
Subtraction represents the operation of removing objects from a collection. The minus sign signifies subtraction −. For example, there are nine oranges arranged as a stack (as shown in the above figure), out of which four oranges are transferred to a basket, then there will be 9 – 4 oranges left in the stack, i.e. five oranges. Therefore, the difference between 9 and 4 is 5, i.e., 9 − 4 = 5. Subtraction is not only applied to natural numbers but also can be incorporated for different types of numbers.
The letter "-" stands for subtraction. Minuend, subtrahend, and difference are the three numerical components that make up the subtraction operation. A minuend is the first number in a subtraction process and is the number from which we subtract another integer in a subtraction phrase.
To learn more about subtraction visit: https://brainly.com/question/2346316
#SPJ1
for the function g(x)=-1/5 x^2 + 4x+1, find the range of g(x)
Plotting the graph of the quadratic function g(x)=-1/5x^2 + 4x + 1 the range is
y ≥ -19How to determine the range of the quadratic functionThe range of the quadratic function is seen at the vertex were the maximum or minimum y value is seen
The graph of the function g(x)=-1/5x^2 + 4x + 1 is plotted and attached
From the graph the vertex coordinates is v(-10, -16). The y coordinates of the vertex is -19 and this is the minimum values for y
Therefore the range is y ≥ -19
Learn more about range here:
https://brainly.com/question/29403658
#SPJ1
When 6 less than 3 times a number is increased by 2 it's at least 5 times the same number decreased by 8
Answer: 2>=n
Step-by-step explanation:
3n-6 +2 >= 5n-8
3n-4 >= 5n-8
-4>= 2n -8
4>=2
2>=n
Hope this helped!!
PLEASE HURRY
I am having trouble
You got to set it up to boys to girls
Answer:
0,1
Step-by-step explanation:
simplest form
which of the following ratios are connected to 5/20?
multiple choice
a 1/5
b1/4
c 20/100
d 25/100
Answer:
which of the following ratios are connected to 5/20?
multiple choice
a 1/5
c 20/100
d 25/100
d is the option 25/100 and
b 1/4
Solve 2y + x + 3 = 0 and 3y - x + 1 = 0 graphically using -4 ≤x ≤ 2
help pls
Answer:
Step-by-step explanation:
We have to the graph from x = -4 to x = 2
2y + x + 3 = 0
Rearrange the equation to make y the subject
2y = -x - 3
y = (-1/2)x -3/2
-3/2 is the y intercept
the gradients is -1/2
since the value is negative, the graph will be sloping downwards
Point your pen at y = -3/2 on the y axis (-3/2 is -1.5)
go 1 point down and 2 points to the right, make a point and connect these 2 dots and make a line across the graph.
Do the same with the other equation:
3y - x + 1 = 0
3y = x - 1
y = (1/3)x -1/3
y intercept is -1/3
gradient is 1/3
point your pen at -1/3 on the y axis, go 1 point up and 3 points to the right
and mark this point and connect these 2 points and make a line across the graph.
What expressions represents the multiplex version of the expression below ?
(6x^2 +5) (2x^3+3)
Answer:
12x^5+18x^2+10x^3+15
Step-by-step explanation:
first you apply the distribution property (FOIL) and you get
12x^5+18x^2+10x^3+15
Which of the following rules describes the function graphed below? On a coordinate plane, points are at (negative 1, 1), (1, 2), (3, 3), (5, 4). a. Output = Input c. Output = (0.5)(Input) + 1.5 b. Output = (2)(Input) – 3 d. Output = (1.5)(Input) + 3
The rule that describes ( -1, 1), (1, 2), (3, 3), (5, 4) is c. Output = (0.5)(Input) + 1.5
What is a function?A function can be defined as the outputs for a given set of inputs.
The inputs of a function are known as the independent variable and the outputs of a function are known as the dependent variable.
Given, On a coordinate plane, points are at ( -1, 1), (1, 2), (3, 3), (5, 4).
By observing the given options we conclude that it is Output = (0.5)(Input) + 1.5 to confirm let's put the values.
Given when input is - 1 output is 1.
∴ 1 = 0.5(-1) + 1.5.
1 = - 0.5 + 1.5.
1 = 1 ( satisfied).
learn more about functions here :
https://brainly.com/question/12431044
#SPJ1
Andrew has picked out some party favors. He calculates that they will cost $7 per guest.
Write an equation that shows how the total cost of the party favors, y, depends on the number of guests, x
Do not include dollar signs in the equation. what does y equal?
Answer:
Step-by-step explanation:
y=7x is the equation that shows how the total cost of the party favors, y, depends on the number of guests, x
What is Equation?Two or more expressions with an Equal sign is called as Equation.
Given,
Andrew has picked out some party favors.
He calculates that they will cost $7 per guest.
We need to find the equation that shows how the total cost of the party favors, y, depends on the number of guests, x
So y=7x where y is the total cost and x is the number of guests and 7 is the cost per guest.
If there are 2 guests then the total cost will be 14.
Hence y=7x is the equation that shows how the total cost of the party favors, y, depends on the number of guests, x
To learn more on Equation:
https://brainly.com/question/10413253
#SPJ1
Determine whether the following sequence is arithmetic, geometric, or neither. 12,17,22,27
Answer:
Arithmetic
Step-by-step explanation:
The difference between consecutive terms is 5. Thus, this is an arithmetic sequence with a common difference of 5.
A person who weighs 150 pounds weighs 25 pounds on the Moon. Suppose an object weighs 80 pounds on the Moon. What’s the objects weight on the Earth?
Answer:
480 lbs
Step-by-step explanation:
First, find the ratio of weight on the moon to weight on the earth. I will put the two known values in a fraction like this:
[tex]\frac{25}{150}[/tex]
Now, I can create a proportion, making sure to keep the same types of measurements in the numerator and denominator. I will use w for the unknown weight on earth.
[tex]\frac{25}{150}=\frac{80}{m}[/tex]
Now, I will simplify the fractions as much as I can.
[tex]\frac{1}{6}=\frac{80}{m}[/tex]
Now, I can see a correlation. 1 times 80 is 80, so 6 times 80 is m. Simplified, here is the answer!
[tex]6*80=m\\480=m\\m=480[/tex]
Answer:
480 pounds
Step-by-step explanation:
we times for objects on earth and divide for objects on the moon by the same number
150
[tex]150 \div x = 25[/tex]
150/-25=-x
-6/-1= -x/-1
6=x
[tex]150 \div 6 = 25[/tex]
so when in object is on earth you multiple by x Wich 6
[tex]80 \times 6 = 480[/tex]
you can also cross multiply
The average annual rainfall for a town is 43.2 inches. The average monthly rainfall for the previous 9 months was 4 inches. Did the town exceed its average annual rainfall? If so, by how much?
Answer:
Yes, the town exceeded the average annual rainfall by 0.4 inchesStep-by-step explanation:
The average annual rainfall for a town is 43.2 inches.
This is converted to average monthly as:
43.2 in / 12 = 3.6 inThe difference is:
4 in - 3.6 in = 0.4 inAnswer:
Yeah, they exceeded by 0.4 inches.
Step-by-step explanation:
It is given that,
→ the average monthly rainfall for the previous 9 months was 4 inches.
The monthly rainfall in 12 months,
→ 43.2 inches ÷ 12 months
→ 43.2/12
→ 3.6 inches
Then the difference will be,
→ 4 inches - 3.6 inches
→ 4 - 3.6
→ 0.4 inches
Hence, the difference is 0.4 inches.
consider following recurrence relation. what will be the number next in series in place of question mark? 0, 3, 8, 15, 24, 35, 48, ?
The number that will be next in the series will be 63 .
In the question ,
a recurrence relation is given that is 0, 3, 8, 15, 24, 35, 48, ? .
we have to find the number that will come in place of question mark .
On carefully examining the series , we can see that
3 - 0 = 3
8 - 3 = 5
15 - 8 = 7
24 - 15 = 9
35 - 24 = 11
48 - 35 = 13
we can se that increments 3,5,7,9,11,13,... form an Arithmetic Progression
with first term as 3 and common difference as 2 ,
So ,the next increment will be 13+2 = 15
let the next term be "x" .
x - 48 = 15
x = 15 + 48 = 63
the number in place of ? is 63 .
Therefore , The number that will be next in the series will be 63 .
Learn more about Arithmetic Progression here
https://brainly.com/question/25271768
#SPJ4
at the lone butte ranch 6 goats and 5 sheep sell for 305 while 2 goats and 9 sheep sell for 285. Find the cost of a single goat and a single sheep.
By solving a system of equations we can see that each goat costs $30 and each sheep costs $25.
How to find the cost of each animal?Let's define the variables:
x = cost of a goat
y = cost of a sheep.
We can write the system of equations with the given info:
6*x + 5*y = 305
2*x + 9*y = 285
If we subtract 3 times the second equation from the first one, we get:
(6*x + 5*y) - 3*(2*x + 9*y) = 305 - 3*285
-22*y = -550
y = -550/-22 = 25
Now that we know the value of y we can try to find the value of x:
2*x +9*25 = 285
2*x = 285 - 9*25 = 60
x = 60/2 = 30
These are the costs of each animal.
Learn more about systems of equations:
https://brainly.com/question/13729904
#SPJ1
Giving brainliest to the person who give a right answer with a clear explanation
Answer:
33. AB = √45. CD = √40. Not congruent. AB is greater.
34. EF = 5. GH = √41. Not congruent. GH is greater.
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Distance between two points}\\\\$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the two points.\\\end{minipage}}[/tex]
Question 33Given endpoints:
A = (0, 2)B = (-3, 8)Substitute the given endpoints into the formula and solve:
[tex]\begin{aligned}\overline{AB}&=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}\\&=\sqrt{(-3-0)^2+(8-2)^2}\\&=\sqrt{(-3)^2+(6)^2}\\&=\sqrt{9+36}\\&=\sqrt{45}\\& \approx 6.7\; \sf (1 \; d.p.)\end{aligned}[/tex]
Given endpoints:
C = (-2, 2)D = (0, -4)Substitute the given endpoints into the formula and solve:
[tex]\begin{aligned}\overline{CD}&=\sqrt{(x_D-x_C)^2+(y_D-y_C)^2}\\&=\sqrt{(0-(-2))^2+(-4-2)^2}\\&=\sqrt{(2)^2+(-6)^2}\\&=\sqrt{4+36}\\&=\sqrt{40}\\& \approx 6.3\; \sf (1 \; d.p.)\end{aligned}[/tex]
Therefore, the segments at not congruent.
[tex]\textsf{As\; $\sqrt{45} > \sqrt{40}$ \; then \; $\overline{AB} > \overline{CD}$}.[/tex]
Therefore, the length of segment AB is greater.
Question 34Given endpoints:
E = (1, 4)F = (5, 1)Substitute the given endpoints into the formula and solve:
[tex]\begin{aligned}\overline{EF}&=\sqrt{(x_F-x_E)^2+(y_F-y_E)^2}\\&=\sqrt{(5-1)^2+(1-4)^2}\\&=\sqrt{(4)^2+(-3)^2}\\&=\sqrt{16+9}\\&=\sqrt{25}\\&=5\end{aligned}[/tex]
Given endpoints:
G = (-3, 1)H = (1, 6)Substitute the given endpoints into the formula and solve:
[tex]\begin{aligned}\overline{GH}&=\sqrt{(x_H-x_G)^2+(y_H-y_G)^2}\\&=\sqrt{(1-(-3))^2+(6-1)^2}\\&=\sqrt{(4)^2+(5)^2}\\&=\sqrt{16+25}\\&=\sqrt{41}\\& \approx 6.4\; \sf (1 \; d.p.)\end{aligned}[/tex]
Therefore, the segments at not congruent.
[tex]\textsf{As\; $\sqrt{41} > 5$ \; then \; $\overline{GH} > \overline{EF}$}.[/tex]
Therefore, the length of segment GH is greater.
Barbara drew a scale drawing of a game room. The scale she used was 2 inches : 1 foot. If the actual length of the pool table is 6 feet, how long is the pool table in the drawing?
If the actual length of the pool table is 6 feet , then the length of the pool table in the drawing is 12 inches .
In the question,
it is given that ,
Barbara drew an scale drawing of the game room.
the scale that she used is 1 feet in the actual length is represented by 2 inches in the drawing ,
which means ,
1 feet = 2 inches
to find the length of 6 feet in the drawing ,
6 feet = 6 × 2 inches
= 12 inches
Therefore , If the actual length of the pool table is 6 feet , then the length of the pool table in the drawing is 12 inches .
Learn more about Scale here
https://brainly.com/question/29043022
#SPJ9
The perimeter of an isosceles triangle is 380 cm and it’s unequal side is 150 find the area of triangle (by Heron’s formula)
Answer:
A ≈ 6538.35 cm²
Step-by-step explanation:
Calculating the area (A) using Heron's formula
A = [tex]\sqrt{s(s-a)(s-b)(s-c)}[/tex]
where s is the semi perimeter and a, b, c the 3 sides
here
s = 380 ÷ 2 = 190
given perimeter = 380 and unequal side is 150 , then
equal sides = (380 - 150) ÷ 2 = 230 ÷ 2 = 115 cm
then a = 150, b = 115 , c = 115
A = [tex]\sqrt{190(190-150)(190-115)(190-115)}[/tex]
= [tex]\sqrt{190(40)(75)(75)}[/tex]
= [tex]\sqrt{42750000}[/tex]
≈ 6538.35 cm² ( to 2 dec. places )
Find the equation of the parabola with the given x-intercepts and point on the graph. Use y = a(x-p)(x-q).
3. x-int: (-4,0) , (7,0)
P (3,8)
Answer:
y = -2/7(x + 4)(x - 7)=============================
Givenx- intercepts (-4, 0) and (7, 0),Point P (3, 8).SolutionThe given translates as:
p = -4, q = 7, x = 3, y = 8Use given x - intercepts to get the equation:
y = a(x + 4)(x - 7)Use the coordinates of P to find the value of a:
8 = a(3 + 4)(3 - 7)8 = a*7*(-4)8 = - 28aa = 8 / - 28a = - 2/7The equation of this parabola is:
y = - 2/7(x + 4)(x - 7)Answer:
[tex]\textsf{Intercept form}: \quad y=-\dfrac{2}{7}(x+4)(x-7)[/tex]
[tex]\textsf{Standard form}: \quad y=-\dfrac{2}{7}x^2+\dfrac{6}{7}x+8[/tex]
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{6 cm}\underline{Intercept form of a quadratic equation}\\\\$y=a(x-p)(x-q)$\\\\where:\\ \phantom{ww}$\bullet$ $p$ and $q$ are the $x$-intercepts. \\ \phantom{ww}$\bullet$ $a$ is some constant.\\\end{minipage}}[/tex]
If the x-intercepts are (-4, 0) and (7, 0) then:
p = -4q = 7Substitute the values of p and q into the formula:
[tex]\implies y=a(x-(-4))(x-7)[/tex]
[tex]\implies y=a(x+4)(x-7)[/tex]
To find a, substitute the given point on the curve P (3, 8) into the equation:
[tex]\implies 8=a(3+4)(3-7)[/tex]
[tex]\implies 8=a(7)(-4)[/tex]
[tex]\implies 8=-28x[/tex]
[tex]\implies a=\dfrac{8}{-28}[/tex]
[tex]\implies a=-\dfrac{2}{7}[/tex]
Substitute the found value of a into the equation:
[tex]\implies y=-\dfrac{2}{7}(x+4)(x-7)[/tex]
Expand to write the equation in standard form:
[tex]\implies y=-\dfrac{2}{7}(x^2-3x-28)[/tex]
[tex]\implies y=-\dfrac{2}{7}x^2+\dfrac{6}{7}x+8[/tex]
Samuel has a collection of toy cars. His favorites are the 27 red ones, which make up 60, percent of his collection.
The total number of toys is 45 Samuel if Samuel has a collection of toy cars. His favorites are the 27 red ones.
What is percentageIt's the ratio of two integers stated as a fraction of a hundred parts. It is a metric for comparing two sets of data, and it is expressed as a percentage using the percent symbol.
It is given that:
Samuel has a collection of toy cars. His favorites are the 27 red ones.
Let Samuel has x number of toys:
From the equation:
60% of x = 27
(60/100)x = 27
0.6x = 27
x = 27/0.6
x = 45
Thus, the total number of toys is 45 Samuel if Samuel has a collection of toy cars. His favorites are the 27 red ones.
The complete question is:
Samuel has a collection of toy cars. His favorites are the 27 red ones which make up 60% of his collection. How many toy cars does Samuel have?
Learn more about the percentage here:
brainly.com/question/8011401
#SPJ1
help pls what are the number of hours i need this before 11/20/22
a. Creating a system of equations, the length of each plan A's workout is 3/4 hour, while the length of each plan B's workout is 3/4 hour.
b. x = -8, y = 2.
How to Solve a System of Equations?Write equations of a system that represents the information given and solve accordingly.
Let the length of plan A = x
Length of plan B = y
Equation for Monday would be:
9x + 7y = 12 --> eqn. 1
Equation for Tuesday:
3x + 5y = 6 --> eqn. 2
Multiply eqn. 1 by 3 and eqn. 2 by 9
27x + 21y = 36 --> eqn. 3
27x + 45y = 54 --> eqn. 4
Subtract the equations:
-24y = -18
y = -18/-24
y = 3/4
Plan B's length of workout is: 3/4 hour.
Substitute y = 3/4 into equation 2:
3x + 5(3/4) = 6
3x + 15/4 = 6
3x = 6 - 15/4
3x = 9/4
12x = 9
x = 9/12
x = 3/4
Length of plan A's workout is: 3/4 hour.
b. 2x + 4y = -8 --> eqn. 1
-2x + 3y = 22 --> eqn. 2
Add both equations together:
7y = 14
y = 2
Substitute y = 2 into equation 1:
2x + 4(2) = -8
2x + 8 = -8
2x = -8 - 8
2x = -16
x = -16/2
x = -8
The solution is: x = -8, y = 2.
Learn more about system of equations on:
https://brainly.com/question/13729904
#SPJ1
The graph to the right is the uniform probability density function for a friend who is x minutes late
(a) Find the probability that the friend is between 25 and 30 minutes late.
(b) It is 10 A.M. There is a 10% probability the friend will arrive within how many minutes?
(a)The probability that the friend is between 25 and 30 minutes late is 1/2.
(b) It is 10 A.M. There is a 10% probability the friend will arrive within 1 minute.
What is probability?
Probability refers to potential. A random event's occurrence is the subject of this area of mathematics. The range of the value is 0 to 1. Mathematics has incorporated probability to forecast the likelihood of various events.Uniform distribution
a = 0
b = 10
a) P(friend is between 25 and 30 minutes late) = (30 - 25)/(b - a)
= 5/(10-0)
= 1/2
b) Let the time for arrival be A minutes
(A - 0)/(b-a) = 0.10
A = 0.10 x (10 - 0)
A = 1 minute
Hence, The probability that the friend is between 25 and 30 minutes late is 1/2 and It is 10 A.M. There is a 10% probability the friend will arrive within 1 minute.
To know more about probability check the below link:
https://brainly.com/question/24756209
#SPJ9
A machine in a factory make 3 1/2 pound of nail in 1 1⁄4 hour. At what rate, in pound per hour, doe the machine make nail?
Answer:
2.8 pounds per hour
Step-by-step explanation:
[tex] \frac{3.5}{1.25} = \frac{350}{125} = \frac{14}{5} = 2.8[/tex]
5a<−35 or a−14>1
Algebra 1, high school
Answer:156
Step-by-step explanation:
The students at Gotham Elementary want to raise $500 for charity. They have raised $337 so far. How much more money do the students need to raise?
Responses
A ? + 337 = 500 or ? − 500 = 337? + 337 = 500 or ? − 500 = 337
B 337 + ? = 500 or 500 – 337 = ?337 + ? = 500 or 500 – 337 = ?
C ? − 337 = 500 or 500 + 337 = ?? − 337 = 500 or 500 + 337 = ?
D 337 + 500 = ? or 500 − ? = 337
Answer: 163$
Step-by-step explanation:
I really need help! Can anyone please answer this!!
The function f has domain : [-4, 5], range : [0, 9], zero : (3, 0), the function is increasing in intervals at [-4, 0] U [3, 5], decreasing in intervals at (0, 3], the relative minimum values of f : (3, 0), and relative maximum values of f : (5, 9).
What are the domain and range of the function?The domain of the function includes all possible x values of a function, and the range includes all possible y values of the function.
The function f is given in the graph.
According to the given function, the required solution would be as:
The domain and range of f will be :
domain : [-4, 5]
range : [0, 9]
The zero of f will be :
(x, y) = (3, 0)
The function is increasing in intervals at [-4, 0] U [3, 5]
The function is decreasing in intervals at (0, 3]
The relative minimum values of f : (3, 0)
The relative maximum values of f : (5, 9)
Learn more about the domain and the range here:
brainly.com/question/21027387
#SPJ1
A scale on a map is 1 200 000. Work out the distance on the map, in cm, if the real distance is 10 km 15 km 4 km
The distance on the map, in cm, given the real distances, and the scale of the map are:
10 km = 5 cm15 km = 7.5 cm4 km = 2 cmHow to find the distance on the map?A scale of 1 : 200, 000 means that every 1 cm on the map is 200, 000 cm on the ground.
To find the distance on the map of 10 km, first convert it to cm:
= 10 km x 100, 000 cm per km
= 1, 000, 000 cm
The distance on the map is therefore:
= 1, 000, 000 / 200, 000 cm scale
= 5 cm on map
The distance of 15 km on the map is:
= (15 km x 100, 000) / 200, 000
= 7.5 cm
The distance of 4 km is:
= (4 x 100, 000) / 200, 000
= 2 cm
Find out more on distance on a map at https://brainly.com/question/24693076
#SPJ1