find the area and perimeter of the following semi circles using 3.142
a)4cm
b) 6cm
c) 3.5cm
PLEASE I NEED THIS ASAP​

Answers

Answer 1

a) For a semi-circle with a radius of 4 cm, the diameter is 8 cm. Therefore, the perimeter of the semi-circle is half the circumference of a circle with a radius of 4 cm, which is 2 x 3.142 x 4 = 25.136 cm (rounded to three decimal places). The area of the semi-circle is half the area of a circle with a radius of 4 cm, which is 1/2 x 3.142 x [tex]4^{2}[/tex] = 25.12 square cm (rounded to two decimal places).

Find the area and perimeter of the following semi circles b) 6cm?

b) For a semi-circle with a radius of 6 cm, the diameter is 12 cm. Therefore, the perimeter of the semi-circle is half the circumference of a circle with a radius of 6 cm, which is 2 x 3.142 x 6 = 37.704 cm (rounded to three decimal places). The area of the semi-circle is half the area of a circle with a radius of 6 cm, which is 1/2 x 3.142 x[tex]6^{2}[/tex] = 56.548 square cm (rounded to three decimal places).

c) For a semi-circle with a radius of 3.5 cm, the diameter is 7 cm. Therefore, the perimeter of the semi-circle is half the circumference of a circle with a radius of 3.5 cm, which is 2 x 3.142 x 3.5 = 21.98 cm (rounded to two decimal places). The area of the semi-circle is half the area of a circle with a radius of 3.5 cm, which is 1/2 x 3.142 x [tex]3.5^{2}[/tex] = 12.125 square cm (rounded to three decimal places).

to know more about semi-circle

brainly.com/question/16688824

#SPJ1


Related Questions

0.83 (repeating) as a percentage

i am hella confused

Answers

Answer:83.33%

Step-by-step explanation:

To convert a decimal to a percentage, we multiply by 100 and add the percent symbol.

0.83 (repeating) is equivalent to 0.833333... (where the 3s repeat indefinitely).

So to convert 0.833333... to a percentage, we multiply by 100:

0.833333... x 100 = 83.3333...

Rounding this to the nearest hundredth, we get:

83.33%

Last Help Please. hELP!

Answers

2 bananas + 1 apple = £1.16

1 banana + 1 apple = £0.71

=> 1 banana = 1.16 - 0.71 = £0.45

=> 1 apple = 0.71 - 0.45 = £0.26

Ans: £0.26

Ok done. Thank to me >:333

solve the following equation graphically (x+1)(y-2)=0

Answers

(-1,2)

(x+1)=0

x=-1

(y-2)=0

y=2

You need to just see what you can substitute in to make x and y in their respected brackets to equal zero, and that gives your coordinates. You may also rearrange to find the value of x or y in these types of questions to solve for the values of either coordinates, hence how I got -1 and 2.

compute the average value of f(x,y) = 2x\sin(xy)f(x,y)=2xsin(xy) over the rectangle 0 \le x \le 2\pi0≤x≤2π, 0\le y \le 40≤y≤4

Answers

The average value of  the function f(x,y) = 2x*sin(xy) over the rectangle 0 ≤ x ≤ 2π, 0 ≤ y ≤ 4 is 0.

Explanation:

To compute the average value of the function f(x, y) = 2x * sin(xy) over the rectangle 0 ≤ x ≤ 2π and 0 ≤ y ≤ 4, Follow these steps:

Step 1: To compute the average value of the function f(x, y) = 2x * sin(xy) over the rectangle 0 ≤ x ≤ 2π and 0 ≤ y ≤ 4, we use the formula:

Average value = (1/Area) * ∬(f(x, y) dA)

where Area is the area of the rectangle, and the double integral computes the volume under the surface of the function over the given region.

Step 2: First, calculate the area of the rectangle:

Area = (2π - 0) * (4 - 0) = 8π

Step 3: Next, compute the double integral of f(x, y) over the given region:

∬(2x * sin(xy) dA) = ∫(∫(2x * sin(xy) dx dy) with limits 0 ≤ x ≤ 2π and 0 ≤ y ≤ 4
∬(2x * sin(xy) dA) = double integral from 0 to 2π of double integral from 0 to 4 of 2x*sin(xy) dy dx

∬(2x * sin(xy) dA) = double integral from 0 to 2π of (-1/2)cos(4πx) + (1/2)cos(0) dx

∬(2x * sin(xy) dA) = (-1/2) * [sin(4πx)/(4π)] evaluated from 0 to 2π

∬(2x * sin(xy) dA) = 0


Step 4: Finally, calculate the average value by dividing the double integral by the area:

Average value = (1/(8π)) * ∬(2x * sin(xy) dA)
Average value=  (1/(8π)) * 0
Average value= 0

Hence, the average value of  the function f(x,y) = 2x*sin(xy) over the rectangle 0 ≤ x ≤ 2π, 0 ≤ y ≤ 4 is 0.

Know more about the double integral click here:

https://brainly.com/question/31404551

#SPJ11

Holly's Day Care has been in operation for several years. Identify each cost as variable (V), fixed (F), or mixed (M), relative to number of students enrolled. 1. Building rent 2. Toys. 3. Compensation of the office manager, who receives a salary plus a bonus based on number of students enrolled Afternoon snacks. 5. Lawn service contract at $200 a month. 6 Holly's salary. 7. Wages of afterschool employees. 8 Drawing paper for students' artwork. 9 Straight-line depreciation on furniture and playground equipment. 10. Fee paid to security company for monthly service.

Answers

Building rent: fixed cost, Toys: variable cost, Compensation of office manager: mixed cost, Afternoon snacks: variable cost, Lawn service cost at $200 a month: fixed cost, H's salary: fixed cost, Wages of after school employees: variable cost, Drawing paper for students' at work: variable cost, Straight-line depreciation on furniture and playground equipment: fixed cost, Fee paid to security company for monthly service: fixed cost.

Costs can be classified as fixed, variable, or mixed. Variable costs are those whose total dollar value vary according to the level of activity. A cost is considered constant if its overall sum does not change as the activity varies. Both fixed and variable costs have characteristics known as mixed or semi-variable costs.

Classify the given cost as fixed, variable or mixed costs:

1) Because building rent must be paid regardless of activity, it is a fixed expense.

2) The quantity of toys to be purchased is influenced by the number of children in H creche; as a result, this expense is variable.

It is a mixed cost because the office manager receives both a fixed salary and a variable incentive dependent on the number of children enrolled.

4) The cost of snacks is vary because it depends on how many kids are enrolled.

5) The contract is a pre-determined arrangement that is carried out regardless of the number of kids enrolled.

6) Because H must be given the consideration regardless of how many kids are registered in the creche, it is a fixed expense.

7) Since the number of children enrolled in creche would determine the amount of after-school personnel recruited, it is a variable expense.

8) Drawing paper purchases are variable costs because they depend on the number of registered youngsters.

9) Asset depreciation is periodically assessed, and it would be assessed even if there were no children enrolled.

10) The cost of the security service is fixed because it must be paid on a regular basis and is one of the expenses associated with operating the nursery.

To learn more about variable, fixed and mixed variable link is here

brainly.com/question/14315718

#SPJ4

If a= 10 , in which of the following is closest to the area of the poster

A = 354 in
B = 275.5 in
C = 614 in
D = 535.5 in

Answers

Answer:

A = 354 in

Explanation:

Multiply the 3a and a, which are equal to 30 and 10, to get the area of the rectangle. This is 300. Then take the circle and use r^2pi for the area. Since you already calculated a quarter of the circle as part of the rectangle section. Multiply the circle area by 3/4 and that will get around 85. 300+85 = 385 which is closest to 354.
The answer is D. 535.5

Let an = 8n/ 4n + 1.

Determine whether {an} is convergent.

Answers

The sequence aₙ = 8n / (4n + 1) is convergent, and its limit is 2.

To determine whether the sequence aₙ = 8n / (4n + 1) is convergent, we can examine its limit as n approaches infinity. Divide both the numerator and the denominator by the highest power of n, in this case, n:

aₙ = (8n / n) / ((4n / n) + (1 / n))

aₙ = (8 / 4 + 1 / n)

As n approaches infinity, 1/n approaches 0. Thus, we have:

aₙ = 8 / 4

aₙ = 2

Since the limit of the sequence exists and is equal to 2, we can conclude that the sequence is convergent.

To know more about  sequence click on below link:

https://brainly.com/question/30262438#

#SPJ11

Calculate the F statistic, writing the ratio accurately, for each of the following cases: a. Between-groups variance is 29.4 and within-groups variance is 19.1. b. Within-groups variance is 0.27 and betweengroups variance is 1.56. c. Between-groups variance is 4595 and withingroups variance is 3972.

Answers

The required answer is  F = 4595/3972 = 1.16.

a. To calculate the F statistic for this case, we need to divide the between-groups variance by the within-groups variance. Therefore, F = 29.4/19.1 = 1.54.
variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. Variance is an important tool in the sciences, where statistical analysis of data is common. The variance is the square of the standard deviation, the second central moment of a distribution, and the covariance of the random variable with itself,


b. Similarly, for this case, F = 1.56/0.27 = 5.78.

the variance between group means and the variance within group means. The total variance is the sum of the variance between group means and the variance within group means. By comparing the total variance to the variance within group means, it can be determined whether the difference in means between the groups is significant.


c. For this case, F = 4595/3972 = 1.16.

The F statistic for each of the cases you provided. The F statistic is calculated as the ratio of between-groups variance to within-groups variance.
variance
(ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among means. ANOVA was developed by the statistician Ronald Fisher. ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether two or more population means are equal, and therefore generalizes the t-test beyond two means.


a. Between-groups variance is 29.4 and within-groups variance is 19.1.
F = (Between-groups variance) / (Within-groups variance)
F = 29.4 / 19.1
F ≈ 1.54

b. Within-groups variance is 0.27 and between-groups variance is 1.56.
F = (Between-groups variance) / (Within-groups variance)
F = 1.56 / 0.27
F ≈ 5.78

c. Between-groups variance is 4595 and within-groups variance is 3972.
F = (Between-groups variance) / (Within-groups variance)
F = 4595 / 3972
F ≈ 1.16

So, the F statistics for each case are approximately 1.54, 5.78, and 1.16, respectively.

To know more about group variance. Click on the link.

https://brainly.com/question/23774256

#SPJ11

Solve the equation:-
x→π
lim
tan 2
x
1+sec 3
x

Answers

The final expression of the equation is 0 .

How to find the limit of a trigonometric expression x→πlimtan 2x1+sec 3x​?

To solve the equation, we can use the fact that

lim x → π / 2 tan 2x = ∞

lim x → π / 2 1 + sec 3x = 1 + sec(3π/2) = 1 - 1 = 0

Therefore, the given limit is of the form ∞/0, which is an indeterminate form.

To resolve this indeterminate form, we can use L'Hopital's rule:

lim x → π / 2 tan 2x / (1 + sec 3x)

= lim x → π / 2 (2sec² 2x) / (3sec 3x tan 3x)= lim x → π / 2 (2/cos² 2x) / (3tan 3x / cos 3x)= lim x → π / 2 (2sin 2x / cos³ 2x) / (3sin 3x / cos 3x)= lim x → π / 2 (4sin 2x / cos⁴ 2x) / (9sin 3x / cos 3x)= lim x → π / 2 (8cos 2x / 27cos 3x)= (8cos π / 2) / (27cos (3π / 2))= 0

Therefore, the solution to the equation is 0.

Learn more about  L'Hopital's rule

brainly.com/question/24116045

#SPJ11

The rate of change of y with respect to x is one-half times the value of y. Find an equation for y, given that y =-7 when x=0. You get: dy 1 2 = e0.5x-7 y =-7e0.5x

Answers

The equation for y (exponential function) is y = -7e⁰.⁵ˣ

What is an exponential function?

An exponential function is a mathematical function with the formula f(x) = ax, where "a" is a positive constant and "x" is any real number. The exponential function's base is the constant "a." Depending on whether the base is larger than or less than 1, the exponential function graph is a curve that rapidly rises or falls. In many branches of mathematics and science, the exponential function is employed to simulate growth and decay processes. Exponential functions can be used to simulate a variety of phenomena, including population expansion, radioactive decay, and compound interest.

The following is the equation for y:

y = -7e⁰·⁵ˣ

Given this, dy/dx = (1/2)y

X=0 causes Y=-7.

We can thus write:

dy/dx = (1/2)y

dy/y = (1/2)dx

By combining both sides, we obtain:

ln|y| = (1/2)x + C

where C is the integration constant.

X=0 causes Y=-7.

So,

ln|-7| = C

C = ln(7)

Therefore,

(1/2)x + ln(7) = ln|y|

|y| = e⁰·⁵ˣ+ ln(7)

y = -7e⁰·⁵ˣ

To know more about exponential function visit:

brainly.com/question/14355665

#SPJ1

A telephone line hangs between two poles 14 m apart in the shape of the catenary y = 13 cosh(x/13) − 8, where x and y are measured in meters.
(b) Find the angle θ between the line and the pole.

Answers

To find the angle θ between the telephone line and the pole, we need to find the slope of the tangent to the catenary at the point where it meets the pole.

The slope of the tangent to the catenary at any point (x, y) is given by:

dy/dx = sinh(x/13)

At the pole, x = 0, and y = 13 - 8 = 5. So, the slope of the tangent to the catenary at the pole is:

dy/dx = sinh(0/13) = 0

This means that the tangent to the catenary at the pole is horizontal.

The angle θ between the telephone line and the pole is the angle between the horizontal and the line. So, we need to find the slope of the line.

The equation of the line passing through the two poles is:

y = mx + c

where m is the slope of the line and c is the y-intercept.

We know that the two poles are 14 m apart, so the x-coordinate of the second pole is 14. Let the y-coordinate of the second pole be y2. Then we have:

y2 = 13 cosh(14/13) - 8 = 45.685

The coordinates of the two poles are (0, 5) and (14, y2).

The slope of the line passing through these two points is:

m = (y2 - 5) / 14 = (45.685 - 5) / 14 = 2.913

So, the angle θ between the telephone line and the pole is:

θ = arctan(m) = arctan(2.913) = 1.234 radians = 1.234 * (180/π) ≈ 70.694 degrees (to 3 decimal places)

Therefore, the angle between the telephone line and the pole is approximately 70.694 degrees.

Learn more about catenary at: https://brainly.com/question/28917025

#SPJ11

To find the angle θ between the telephone line and the pole, we need to find the slope of the tangent to the catenary at the point where it meets the pole.

The slope of the tangent to the catenary at any point (x, y) is given by:

dy/dx = sinh(x/13)

At the pole, x = 0, and y = 13 - 8 = 5. So, the slope of the tangent to the catenary at the pole is:

dy/dx = sinh(0/13) = 0

This means that the tangent to the catenary at the pole is horizontal.

The angle θ between the telephone line and the pole is the angle between the horizontal and the line. So, we need to find the slope of the line.

The equation of the line passing through the two poles is:

y = mx + c

where m is the slope of the line and c is the y-intercept.

We know that the two poles are 14 m apart, so the x-coordinate of the second pole is 14. Let the y-coordinate of the second pole be y2. Then we have:

y2 = 13 cosh(14/13) - 8 = 45.685

The coordinates of the two poles are (0, 5) and (14, y2).

The slope of the line passing through these two points is:

m = (y2 - 5) / 14 = (45.685 - 5) / 14 = 2.913

So, the angle θ between the telephone line and the pole is:

θ = arctan(m) = arctan(2.913) = 1.234 radians = 1.234 * (180/π) ≈ 70.694 degrees (to 3 decimal places)

Therefore, the angle between the telephone line and the pole is approximately 70.694 degrees.

Learn more about catenary at: https://brainly.com/question/28917025

#SPJ11

find the maximum and minimum values of f(x,y)=18x2 19y2 on the disk d: x2 y2≤1What is the critical point in D?

Answers

The maximum value of f(x,y) on the disk D is attained on the boundary of the disk, where x^2 + y^2 = 1. Since f(x,y) = 18x^2 + 19y^2 is increasing in both x and y, the maximum value is attained at one of the points (±1,0) or (0,±1), where f(x,y) = 18. The minimum value of f(x,y) on the disk D is attained at the point (√(19/36), √(18/38)), where f(x,y) = 18/36

How to find the maximum and minimum values of the functions?

To find the maximum and minimum values of the function [tex]f(x,y) = 18x^2 + 19y^2[/tex] on the disk [tex]D: x^2 + y^2 \leq 1[/tex], we can use the method of Lagrange multipliers.

Let [tex]g(x,y) = x^2 + y^2 - 1[/tex]be the constraint equation for the disk D. Then, the Lagrangian function is given by:

L(x,y, λ) = f(x,y) - λg(x,y) [tex]= 18x^2 + 19y^2 -[/tex]λ[tex](x^2 + y^2 - 1)[/tex]

Taking partial derivatives with respect to x, y, and λ, we get:

∂L/∂x = 36x - 2λx = 0

∂L/∂y = 38y - 2λy = 0

∂L/∂λ = [tex]x^2 + y^2 - 1 = 0[/tex]

Solving these equations simultaneously, we get two critical points:

(±√(19/36), ±√(18/38))

To determine whether these points correspond to maximum, minimum or saddle points, we need to use the second derivative test. Evaluating the Hessian matrix of second partial derivatives at these points, we get:

H = [ 36λ 0 2x ]

[ 0 38λ 2y ]

[ 2x 2y 0 ]

At the point (√(19/36), √(18/38)), we have λ = 36/(2*36) = 1/2, x = √(19/36), and y = √(18/38). The Hessian matrix at this point is:

H = [ 18 0 √(19/18) ]

[ 0 19 √(18/19) ]

[ √(19/18) √(18/19) 0 ]

The determinant of the Hessian matrix is positive and the leading principal minors are positive, so this point corresponds to a local minimum of f(x,y) on the disk D.

Similarly, at the point (-√(19/36), -√(18/38)), we have λ = 36/(2*36) = 1/2, x = -√(19/36), and y = -√(18/38). The Hessian matrix at this point is:

H = [ -18 0 -√(19/18) ]

[ 0 -19 -√(18/19) ]

[ -√(19/18) -√(18/19) 0 ]

The determinant of the Hessian matrix is negative and the leading principal minors alternate in sign, so this point corresponds to a saddle point of f(x,y) on the disk D.

Therefore, the maximum value of f(x,y) on the disk D is attained on the boundary of the disk, where [tex]x^2 + y^2 = 1[/tex]. Since f(x,y) = [tex]18x^2 + 19y^2[/tex] is increasing in both x and y, the maximum value is attained at one of the points (±1,0) or (0,±1), where f(x,y) = 18. The minimum value of f(x,y) on the disk D is attained at the point (√(19/36), √(18/38)), where f(x,y) = 18/36.

Learn more about maximum and minimum values

brainly.com/question/14316282

#SPJ11

Solve sin²(θ)=cos²(θ) for all θ in the interval [0,2π]

Answers

The solutions for sin²(θ) = cos²(θ) in the interval [tex][0, 2\pi ][/tex] are:

θ = [tex]\frac{\pi }{4}, \frac{\ 3\pi }{4}, \frac{\ 5\pi }{4}, and \ \frac{\ 7\pi }{4}[/tex].

Here, the given equation is :

sin²(θ)=cos²(θ)

Now, solving it to find the solution in the interval [tex][0, 2\pi ][/tex]

Using the identity: sin²(θ) + cos²(θ) = 1,

Substituting cos²(θ) for sin²(θ) in the above equation,

cos²(θ) + cos²(θ) = 1

On simplifying:

2cos²(θ) = 1

Dividing both sides by 2:

cos²(θ) = [tex]\frac{1}{2}[/tex]

Taking square root on both sides:

cos(θ) = ± [tex]\sqrt{\frac{1}{2} }[/tex]

So, we have two possible solutions for cos(θ):

cos(θ) = [tex]\sqrt{\frac{1}{2} }[/tex],cos(θ) = -  [tex]\sqrt{\frac{1}{2} }[/tex]

We can find the corresponding values of θ using the unit circle:

When cos(θ) = [tex]\sqrt{\frac{1}{2} }[/tex], θ = [tex]\frac{\pi }{4}[/tex] or θ = [tex]\frac{7\pi }{4}[/tex].

When cos(θ) = - [tex]\sqrt{\frac{1}{2} }[/tex], θ = [tex]\frac{3\pi }{4}[/tex] or θ = [tex]\frac{5\pi }{4}[/tex].

Therefore, the solutions for sin²(θ) = cos²(θ) in the interval [tex][0, 2\pi ][/tex] are:

θ = [tex]\frac{\pi }{4}, \frac{\ 3\pi }{4}, \frac{\ 5\pi }{4}, and \ \frac{\ 7\pi }{4}[/tex].

To know more about equations and solutions,

https://brainly.com/question/28991103

https://brainly.com/question/27950389

HELPPP! Which of the following is the distance between the two points shown?


2.5 units

3.5 units

−3.5 units

−2.5 units

Answers

Answer: 3.5 units

Step-by-step explanation:

We can count how many units the 2 points are away from each other and get 3.5

Or we can use the origin as a reference point, and since (-3,0) is 3 units away, and (0.5,0) is 0.5 units away. Adding the distances gives us 3.5 units

Answer is 3.5 units

Triangle KLM, with vertices K(2,5), L(6,3), and M(9,9), is drawn inside a rectangle, as shown below. What is the area, in square units, of triangle KLM?

Answers

The area of the triangle is given as  Area = 15.56 square units

What is a triangle?

Recall that a triangle is a three-sided polygon that consists of three edges and three vertices

We shall first find the sides of the triangle as follows

The distance KL = [tex]\sqrt{(3-5)^{2} + (6-2)^{2} }[/tex]

KL = [tex]\sqrt{(-2)x^{2} ^{2} + (4)^{2} }[/tex]

KL = [tex]\sqrt{4+16} = \sqrt{20}[/tex]

KL = 4.5

The distance KM = [tex]\sqrt{(5-9)^{2} + (2-9)x^{2} ^{2} } \\KM = \sqrt{(-7)^{2} + (-4)^{2} }[/tex]

KM = [tex]\sqrt{49+16} = \sqrt{65} = 8.1[/tex]

The distance LM = [tex]\sqrt{(3-9)^{2} + (6-9)^{2} } \\LM = \sqrt{-6^{2} + -3^{2} } \\LM = \sqrt{36+9 = \sqrt{45} } \\= 6.7[/tex]

Having determined all the three sides of the triangle, Let us use Hero's formula to determine the area of the triangle by

Area = [tex]\sqrt{s[(s-a)(s-b)(s-c)} \\[/tex]

where s = (a+b+c)/2

s= (4.5+8.1+6.7)/2

s= 19.32

s= 9.7

Applying the formula we have

Area = [tex]\sqrt{9.7[(9.7-4.5)(9.7-8.1)(9.7-6.7)}[/tex]

Area = [tex]\sqrt{9.7[(5.2)(1.6)(3)}[/tex]

Area = √242.112

Therefore the Area = 15.56 square units

Learn more about area of triangles on https://brainly.com/question/19305981

#SPJ1

can someone please help (timed)

Answers

Answer:

a

Step-by-step explanation:

two containers are used to hold liquid. these containers have exactly the same shape. the first container has a height of 12 m, and it can hold 48 m^3 of liquid. if the second container has a height of 30 m, how much liquid can it hold?

Answers

If the second container has a height of 30 m, the second container can hold 300 m³ of liquid.

Since the two containers have exactly the same shape, their volumes are proportional to the cubes of their corresponding dimensions. Let's denote the volume of the second container as V₂ and its height as h₂. Then we have:

(V₂ / V₁) = (h₂ / h₁)³

where V₁ and h₁ are the volume and height of the first container, respectively. Substituting the given values, we get:

(V₂ / 48) = (30 / 12)³

(V₂ / 48) = 2.5³

V₂ = 48 × 2.5³

V₂ = 300 m³

Therefore, the second container can hold 300 m³ of liquid.

For more details regarding volume, visit:

https://brainly.com/question/1578538

#SPJ1

The constant of proportionality is m=_

Answers

the slope goes by several names

• average rate of change

• rate of change

• deltaY over deltaX

• Δy over Δx

• rise over run

• gradient

• constant of proportionality

however, is the same cat wearing different costumes.

to get the slope of any straight line, we simply need two points off of it, let's use those two in the picture below

[tex](\stackrel{x_1}{3}~,~\stackrel{y_1}{48})\qquad (\stackrel{x_2}{8}~,~\stackrel{y_2}{128}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{128}-\stackrel{y1}{48}}}{\underset{\textit{\large run}} {\underset{x_2}{8}-\underset{x_1}{3}}} \implies \cfrac{ 80 }{ 5 } \implies \text{\LARGE 16}[/tex]

Two quantities a and b are said to be in the "golden ratio" when the ratio of sum of the two quantities to the larger quantity equals the ratio of the larger quantity to the smaller quantity. That is, when a+b/a=a/b where a>b. a. Show that this implies b/a-b=a/bb. Now define Φ=a/b. Show that the quadratic equation Φ2−Φ−1=0, follows from the definition of golden ratio. Find the positive root of this quadratic equation.

Answers

This is the golden ratio, denoted by the Greek letter φ. It is approximately equal to 1.618.

To show that b/a-b=a/bb, we start from the equation a+b/a=a/b, which can be rearranged as follows:

[tex]a + b = a^2 / b[/tex]

Multiplying both sides by b yields:

[tex]ab + b^2 = a^2[/tex]

Subtracting ab from both sides gives:

[tex]b^2 = a^2 - ab[/tex]

Factoring out [tex]a^2[/tex] on the right-hand side gives:

[tex]b^2 = a(a - b)[/tex]

Dividing both sides by ab yields:

b/a = a/(a-b)

Substituting Φ = a/b, we have:

1/Φ = Φ/(Φ - 1)

Multiplying both sides by Φ yields:

Φ^2 - Φ - 1 = 0

This is a quadratic equation in Φ. To solve for Φ, we can use the quadratic formula:

Φ = (1 ± sqrt(5))/2

The positive root is:

Φ = (1 + sqrt(5))/2

This is the golden ratio, denoted by the Greek letter φ. It is approximately equal to 1.618.

To learn more about quadratic equation visit: https://brainly.com/question/30098550

#SPJ11

Determine the sample size needed to construct a 95% confidence interval for the population mean, μ, with a margin of error E=3. The sample standard deviation is s = 12.
43
44
61
62

Answers

The Sample standard deviation of 12 is 62

To determine the sample size needed to construct a 95% confidence interval for the population mean, μ, with a margin of error E=3 and a sample standard deviation s=12, follow these steps:

1. Find the critical value (z-score) for a 95% confidence interval. The critical value for a 95% confidence interval is 1.96.

2. Use the formula for determining sample size: n = (z * s / E)²
  Here, z = 1.96, s = 12, and E = 3.

3. Plug in the values and calculate the sample size:
  n = (1.96 * 12 / 3)²
  n = (7.84)²
  n ≈ 61.47

4. Round up to the nearest whole number to get the minimum sample size required: 62.

So, the sample size needed to construct a 95% confidence interval for the population mean with a margin of error of 3 and a sample standard deviation of 12 is 62.

To know more about  refer here:

https://brainly.com/question/23907081

#SPJ11

What is the value of sin C?
O
O
O
000
86
17
677
15
17
A
B
17
15

Answers

Answer:

8/17

Step-by-step explanation:

sin c = opposite/ hypotenuse

sin c = 8/17

now suppose that x ∼ binomial(n, p) and y ∼ bernoulli(p) are independent. what is the distribution of s = x y ? (justify.)

Answers

The PMF of s is:

[tex]P(s = 0) = (1-p)^n + (1-p)[/tex])

P(s = 1) = np(1-p)

The random variable s = xy can take on the values 0 or 1, depending on the values of x and y. We want to find the probability distribution of s.

We can start by finding the probability mass function (PMF) of s. For s = 0, we have:

P(s = 0) = P(xy = 0) = P(x = 0) + P(y = 0)

where the second equality follows from the fact that x and y are independent, so P(xy = 0) = P(x = 0)P(y = 0).

Using the PMF of x and y, we have:

P(s = 0) = P(x = 0) + P(y = 0)

= (1-p)^n + (1-p)

For s = 1, we have:

P(s = 1) = P(xy = 1) = P(x = 1)P(y = 1)

Using the PMF of x and y, we have:

P(s = 1) = P(x = 1)P(y = 1)

= np(1-p)

Therefore, the PMF of s is:

[tex]P(s = 0) = (1-p)^n + (1-p)[/tex])

P(s = 1) = np(1-p)

This distribution is called a mixture distribution, which is a combination of the Bernoulli and binomial distributions. We can see that when p = 0, s is always equal to 0, and when p = 1, s follows a binomial distribution with parameters n and p. When 0 < p < 1, s has a nontrivial mixture distribution.

To know more about "probability mass function (PMF)" refer here:

https://brainly.com/question/28741305#

#SPJ11

Find the derivative of the following function: y=xtanh−1(x)+l(√1−x2).

Answers

The required answer is dy/dx = tanh^(-1)(x) + (x*(1/(1-x^2))) - x/(1-x^2)

dy/dx = tanh^(-1)(x) + (x*(1/(1-x^2))) - x/(1-x^2) That is the derivative of the given function.

To find the derivative of the function y=xtanh−1(x)+l(√1−x2), we need to use the chain rule and the derivative of inverse hyperbolic tangent function.
he derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. It can be calculated in terms of the partial derivatives with respect to the independent variables.

the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.


The derivative of inverse hyperbolic tangent function is given by:

(d/dx) tanh−1(x) = 1/(1−x^2)

Using the chain rule, the derivative of the first term x*tanh−1(x) is:

(d/dx) (x*tanh−1(x)) = tanh−1(x) + x*(d/dx) tanh−1(x)
= tanh−1(x) + x/(1−x^2)

The derivative of the second term l(√1−x^2) is:

(d/dx) l(√1−x^2) = −l*(d/dx) (√1−x^2)
= −l*(1/2)*(1−x^2)^(−1/2)*(-2x)
= lx/(√1−x^2)

Therefore, the derivative of the function y=xtanh−1(x)+l(√1−x^2) is:
(d/dx) y = tanh−1(x) + x/(1−x^2) + lx/(√1−x^2)

To find the derivative of the given function y = x*tanh^(-1)(x) + ln(√(1-x^2)), we will differentiate each term with respect to x.

Derivatives can be generalized to functions of several real variables. In this generalization, the derivative is reinterpreted as a linear transformation whose graph is (after an appropriate translation) the best linear approximation to the graph of the original function. The Jacobian matrix is the matrix that represents this linear transformation with respect to the basis given by the choice of independent and dependent variables. It can be calculated in terms of the partial derivatives with respect to the independent variables. For a real-valued function of several variables, the Jacobian matrix reduces to the gradient vector.
The chain rule may also be expressed in Leibniz's notation. If a variable z depends on the variable y, which itself depends on the variable x (that is, y and z are dependent variables), then z depends on x as well, via the intermediate variable y.

Derivative of the first term:
Using the product rule and the chain rule for the inverse hyperbolic tangent, we get:
d/dx(x*tanh^(-1)(x)) = tanh^(-1)(x) + (x*(1/(1-x^2)))

Derivative of the second term:
Using the chain rule for the natural logarithm, we get:
d/dx(ln(√(1-x^2))) = (1/√(1-x^2))*(-x/√(1-x^2)) = -x/(1-x^2)

Now, add the derivatives of the two terms:
dy/dx = tanh^(-1)(x) + (x*(1/(1-x^2))) - x/(1-x^2)

That is the derivative of the given function.

To know more the chain rule. click on the link.

https://brainly.com/question/30117847

#SPJ11

Of 48 cars taking road worthiness test each of them had at least one fault in • brakes, lights, steering, 14 had faults in brakes only, 7 brakes and steering, 3 steering and light only,10 brakes and light 4 had fault in brakes, steering and lights.the number of cars that failed because of fault in steering equalled the number of cars that failed due to lights only. a Illustrate the information on a venn diagram b.how many cars had faulty lights. c. how many cars had only one fault​

Answers

In the given problem, having drawn a Venn diagram below, there were 6 cars with faulty lights and 13 cars with only one fault.

How to Solve the Problem?

a) Here is a Venn diagram illustrating the information given:

 _____B_____

       /     |     \

      /      |      \

     /       |       \

   BL       BS       SL

    / \      / \      / \

   /   \    /   \    /   \

  /     \  /     \  /     \

 B       S        L      None

  \     / \      / \      

   \   /   \    /   \    

    \ /     \  /     \    

     BS      BL      SL    

       \     |     /        

        \    |    /        

         \   |   /        

          ¯¯¯¯¯¯¯¯¯        

where B stands for brakes, S stands for steering, L stands for lights, BL stands for faults in brakes and lights, BS stands for faults in brakes and steering, SL stands for faults in steering and lights, and None stands for no faults.

b) To find the number of cars with faulty lights, we add up the numbers in the L and SL circles:

cars with faulty lights = L + SL = 3 + 3 = 6.

c) To find the number of cars with only one fault, we add up the numbers in the circles that represent faults in only one category:

cars with one fault = (B - BL) + (S - BS) + (L - BL - SL) = (14 - 4) + (0) + (10 - 4 - 3) = 13.

Therefore, there were 6 cars with faulty lights and 13 cars with only one fault.

Learn more about Venn diagram here: https://brainly.com/question/30069829

#SPJ1

A sample of a radioactive isotope had an initial mass of 490 mg in the year 2006 and
decays exponentially over time. A measurement in the year 2008 found that the
sample's mass had decayed to 370 mg. What would be the expected mass of the
sample in the year 2012, to the nearest whole number?

Answers

The expected mass of the sample in the year 2012 is 280 grams

Given data ,

The exponential decay formula is given by:

N(t) = N0 * e^(-λt)

where:

N(t) is the remaining mass of the radioactive isotope at time t,

N0 is the initial mass of the radioactive isotope,

e is Euler's number (approximately equal to 2.71828),

λ is the decay constant of the radioactive isotope, and

t is the time elapsed since the initial measurement.

We know that the initial mass of the sample in 2006 was 490 mg, and the mass of the sample in 2008 was measured to be 370 mg

So , r = ( 490 / 370 )^1/2 - 1

On simplifying , we get

The exponential growth rate r = -13.103392 %

Now , the year = 2012 , t = 4 years

So , x₄ = 490 ( 1 + 13.10/100 )⁴

On simplifying , we get

x₄ = 279.4 grams

On rounding to the nearest whole number ,

x₄ = 280 grams

Hence , the amount of the sample left in 2012 is 280 grams

To learn more about exponential growth factor click :

https://brainly.com/question/13674608

#SPJ1

find the limit of the function (if it exists). (if an answer does not exist, enter dne.) lim x→−3 (x^2 − 9x + 3)

Answers

lim x→−3 (x² − 9x + 3) is  39.

To find the limit of the function lim x→−3 (x² − 9x + 3), we will follow these steps:

Step 1: Identify the function
The given function is

f(x) = x² − 9x + 3.

Step 2: Determine the value of x that the limit is approaching
The limit is approaching x = -3.

Step 3: Evaluate the function at the given value of x
Substitute x = -3 into the function:

f(-3) = (-3)² − 9(-3) + 3.

Step 4: Simplify the expression
f(-3) = 9 + 27 + 3 = 39.

So, the limit of the function as x approaches -3 is 39.

To learn more about limit: https://brainly.com/question/30679261

#SPJ11

Since we want |error| < 0.0000001, then we must solve |1/5! x^5 < 0.0000001, which gives us

|x^5| < ________

Answers

Thus, |x^5| < 0.0000120

What is Permutation and Combination?

Mathematically, permutation and combination are concepts utilized to determine potential arragements or choices of items from a predetermined group.

The term "permutation" refers to the placement of the objects in an exact order where sequence plays a critical role. Conversely, when dealing with combinations one only focuses on selection rather than arrangement.

The formulas needed for calculating permutations and combinations are dependent upon the size of the specific set as well as the total number of objects being arranged or picked. Such mathematical principles serve as building blocks in fields ranging from probability and statistics to combinatorics due to their ability to create predictive models for complex systems.

Read more about permutation here:

https://brainly.com/question/28065038

#SPJ1

Which of the following is the best
description of the number 1.381432
O A. a counting number
OB. an irrational number
OC. a rational number and a repeating
decimal
OD. a rational number and a
terminating decimal

Answers

Answer:

D. a rational number and a terminating decimal.

The number 1.381432 is a rational number and a non-repeating decimal. A rational number is a number that can be expressed as a ratio of two integers. In this case, 1.381432 can be expressed as the ratio of 1381432/1000000, which can be simplified to 689/500. It is also a non-repeating decimal, meaning that the decimal digits do not repeat in a pattern, but rather continue on without repetition. Therefore, the correct answer is not option C, which suggests that a number is a rational number and a repeating decimal.

Can someone please explain this with working? ​

Answers

Answer:

27

Step-by-step explanation:

To solve for the value of p in the equation (2p^(1/3)) = 6, we need to isolate p on one side of the equation.

First, we can divide both sides of the equation by 2 to get:

p^(1/3) = 3

Next, we can cube both sides of the equation to eliminate the exponent of 1/3:

(p^(1/3))^3 = 3^3

Simplifying the left-hand side of the equation, we get:

p = 27

Therefore, the value of p that satisfies the equation (2p^(1/3)) = 6 is 27.

Quienes son las personas más calificadas para orientar a la hora de tomar una decisión financiera

Answers

Explication:

Una de las aspiraciones de la mayoría de los inversionistas es obtener la estabilidad suficiente en la rentabilidad de sus inversiones, para alcanzar la libertad financiera.

No importa la edad en la que se empiece, una adecuada planeación de las inversiones es la única forma de lograr finanzas exitosas. Llevar una correcta administración financiera será la clave para obtener resultados positivos y hacer crecer tu dinero.

Los asesores financieros más importantes han compartido sus mejores consejos respecto a finanzas. A lo largo te hablaremos de los tipos de decisiones, los factores que intervienen, así como de tips y consejos para ayudarte a encontrar un equilibrio financiero.

Respuesta:

La responsabilidad de decidir de manera correcta es una de las funciones que tiene un gerente o supervisor de empresa, en especial, si se trata de tu propio negocio o emprendimiento.

Other Questions
PLEASE HELP ME! 7.Find the circumference. Leave your answer in terms of .5.7 cmA. 11.4 cmB. 8.55 cmC. 2.85m cmD. 5.7 consider the anatomical differences between bronchi and bronchiole airways. how does the cartilage, smooth muscle, epithelium, and diameter of the two airways differ? The average daily temperature, t, in degrees Fahrenheit for a city as a function of the month of the year, m, can be modeled by the equation graphed below, where m = 0 represents January 1, m = 1 represents February 1, m = 2 represents March 1, and so on. If the equation is t = a cosine (StartFraction pi Over 6 EndFraction (m + 1)) + k, what are the values of a and k?On a coordinate plane, a curve starts at (0, 42). It increases to (5, 80) and then decreases to (11, 40). Which element of risk management forms the core component of the process?a) Communicationb) Risk governancec) Risk identification and measurement Find the vertical and horizontal lines through the point (-1,5). Choose the two correct answers. 1. Horizontal:y-5 2. Vertical: x5 3. Vertical y 5 4. Horizontal: 5 5. Horizontal: x1 6. Horizontaly. 1 7. Vertical-.1 m 8. Vertical y. 1 Dylan wants to purchase a string of lights to put around the entire perimeter of the semicircular window shown below. write the brnsted acid equation for ch3cooh(aq).color of universal indicator in CH3COOH ____ pH ___color of universal indicator after addition of NaCH3CO2 ____ pHeffect of NaCH3CO2 on the equilibrium. use equation 16.14 to account for your observation,color of universal indicator in water _____ In contrast to the post-1980s United States, the "Asian Tiger" economies: a. enjoyed more laissez-faire economies. b. utilized national non-military technology policies involving heavy government subsidies to selected strategic industries. c. were slow to patent innovations. d. showed less international orientation According to Gilbert H. Muller, which of the following are functions of anintroduction?to provide evidenceO to introduce the topicto offer readers a guide to the essayto present writer's attitudeO recap essay's major pointsall of the above rejecting the null hypothesis means that the sample outcome is very unlikely to have occurred if h0 is true bartely. true or false Tori's scout troop got a new bag of 500 cotton balls in assorted colors to use for crafts. She randomly grabbed some cotton balls out of the bag, looked at them, and put them back in the bag. Here are the colors she grabbed: pink, yellow, blue, yellow, pink, pink, blue, yellow, pink, blue, blue, yellow, pink Based on the data, estimate how many yellow cotton balls are in the bag. Expand and Simplify 6(a+2)+2(a-1) a block of mass m = 1.5 kg is dropped from height h = 75 cm onto a spring of spring constant k = 1880 n/m. find the maximum distance the spring is compressed. a rate is equal to 0.0200 m/s. if [a] = 0.100 m and rate = k[a]0, what is the new rate if the concentration of [a] is increased to 0.400 m? Report your measurements to the correct number of significant figures. From the procedure 1. Place 30 mL of the cyclohexane and toluene mixture in a 50 mL round bottom flask with a few boiling stones or a stir bar. Volume of the starting solution (mL) Graduated cylinder reading 50 40 30 20 1. zip: It must be _____2. front pockets: It might be _____3. back pockets: It might be _____4. leg hem: They may need to _____5. side seams: It must be _____ Consider the two strings x and y that belongs to the language L over the input alphabet . Assume, z is any string that belongs to . The string z is said to distinguish x and y with respect to the language L if and only if xz or yz belongs to the language L but not both.a.Consider the language over the input alphabet {a b}.The elements of an infinite set .For some string b, two elements of the infinite set are pairwise L-distinguishable because, but . For vg1 = vg2 =0 v, find | vov| and vsg for each of q} and q2. also find v5, vd1, vd2, and vo. (b) if the current source requires a minimum voltage of 0.2 v, find the input common-mode range. AP PHYSICS 1 HELP PLEASE!! The pendulum illustrated above has a length of 2m and a bob of mass of 0.04 kg. It is held at an angle theta shown, where cos theta= 0.9. The frequency of oscillation is most nearlyA.) 4 hzB.) 2.2 hzC.) (0.25)/() hzD.) (.2)/2 hzE.) (5)/(2) hzThe correct answer is E, but I have no clue why. Please help! determine the magnitude of the force on an electron traveling 5.95105 m/s m / s horizontally to the east in a vertically upward magnetic field of strength 0.25 t t .