find the inverse laplace transform of 8s 2s2−25s>5

Answers

Answer 1

The value of the function 8s/ 2s^2−25s using inverse  Laplace transform  is equal to 4e^(25t/2).

Function is equal to,

8s/ 2s^2−25s

Value of 's' after factorizing the denominator we get,

2s^2−25s = 0

⇒ s( 2s -25 ) =0

⇒ s =0 or s =25/2

Now apply partial fraction decomposition we get,

8s/ 2s^2−25s = A/s + B /(2s -25)

Simplify it we get,

⇒ 8s = A(2s -25) + Bs

Now substitute s =0 we get,

⇒ 0 = A (-25) + 0

⇒ A =0

and s = 25/2

⇒8(25/2) = A(2×25/2 -25 ) + B(25/2)

⇒100 = B(25/2)

⇒B = 8

Now ,

8s/ 2s^2−25s = 0/s + 8 /(2s -25)

⇒ 8s/ 2s^2−25s = 8 /(2s -25)

Take inverse Laplace transform both the side we get,

L⁻¹ [8s / (2s^2 - 25s)] = L⁻¹ [8/(2s - 25)]

Apply , L⁻¹ [1/(as + b)] = (1/a)e^(-bt/a),

here,

a = 2 , b = -25

L⁻¹ [8s / (2s^2 - 25s)]

= L⁻¹ [8/(2s - 25)]

= (8/2) e^(25t/2)

= 4e^(25t/2)

Therefore, the value of  inverse Laplace transform for the given function is equal to 4e^(25t/2)

Learn more about Laplace transform here

brainly.com/question/30404106

#SPJ4

The above question is incomplete, the complete question is:

Find the inverse Laplace transform of 8s/ 2s^2−25s.


Related Questions

Consider the following.C = x3 − 10x2 + 33xUse the cost function to find the production level at which the average cost is a minimum.x =For this production level, show that the marginal cost and average cost are equal.marginal cost $average cost $

Answers

As the marginal cost and average cost are both equal to $8 at x = 5, we can conclude that the marginal cost and average cost are equal at this production level.

To find the production level at which the average cost is a minimum, we need to first find the average cost function. The average cost function is given by:

[tex]AC(x) = C(x)/x[/tex]

Substituting C(x) from the given equation, we get:

[tex]AC(x) = (x^3 - 10x^2 + 33x)/x[/tex]

Simplifying this, we get:

[tex]AC(x) = x^2 - 10x + 33[/tex]

To find the production level at which the average cost is a minimum, we need to find the value of x that minimizes the average cost function. We can do this by taking the derivative of the average cost function and setting it equal to zero:

[tex]d/dx (x^2 - 10x + 33) = 2x - 10 = 0[/tex]

Solving for x, we get:

x = 5

Therefore, the production level at which the average cost is a minimum is x = 5.

To show that the marginal cost and average cost are equal at this production level, we need to first find the marginal cost function. The marginal cost function is given by the derivative of the cost function:

[tex]MC(x) = d/dx (x^3 - 10x^2 + 33x) = 3x^2 - 20x + 33[/tex]

Substituting x = 5, we get:

[tex]MC(5) = 3(5)^2 - 20(5) + 33 = 8[/tex]

Therefore, the marginal cost at x = 5 is $8.

To find the average cost at x = 5, we can substitute x = 5 into the average cost function:

[tex]AC(5) = 5^2 - 10(5) + 33 = 8[/tex]

Therefore, the average cost at x = 5 is also $8.

Since the marginal cost and average cost are both equal to $8 at x = 5, we can conclude that the marginal cost and average cost are equal at this production level.

To know more about marginal cost refer here:

https://brainly.com/question/15575229

#SPJ11

1. find the coefficient of x10 in (1 x x2 x3 · · ·)n.

Answers

The coefficient of x¹⁰ in (1 × x × x² × x³ × …)ⁿ is 1 for n=5 and n=10. For other values of n, the coefficient of x^10 will be 0, as there are no other possible combinations to achieve x¹⁰.

To find the coefficient of x¹⁰ in (1 × x × x² × x³ × …)ⁿ, you need to determine the possible ways to select terms from the sequence (1 × x × x² × x³ × …) such that their product is x¹⁰ and there are n terms.

Let's consider the following possible combinations of terms that can result in x^10:

1. x × x² × x² × x² × x³ (Here, n=5)
2. x² × x² × x² × x² × x² (Here, n=10)

These are the only two combinations that result in x¹⁰, assuming all powers of x are positive. For the first combination, there is only one way to select the terms, so the coefficient is 1. For the second combination, since all terms are the same, there is also only one way to select the terms, so the coefficient is 1.

Therefore, the coefficient of x¹⁰ in (1 × x × x² × x³ × …)ⁿ is 1 for n=5 and n=10. For other values of n, the coefficient of x^10 will be 0, as there are no other possible combinations to achieve x¹⁰.

To learn more about coefficient here:

brainly.com/question/28975079#

#SPJ11

The coefficient of x¹⁰ in (1 × x × x² × x³ × …)ⁿ is 1 for n=5 and n=10. For other values of n, the coefficient of x^10 will be 0, as there are no other possible combinations to achieve x¹⁰.

To find the coefficient of x¹⁰ in (1 × x × x² × x³ × …)ⁿ, you need to determine the possible ways to select terms from the sequence (1 × x × x² × x³ × …) such that their product is x¹⁰ and there are n terms.

Let's consider the following possible combinations of terms that can result in x^10:

1. x × x² × x² × x² × x³ (Here, n=5)
2. x² × x² × x² × x² × x² (Here, n=10)

These are the only two combinations that result in x¹⁰, assuming all powers of x are positive. For the first combination, there is only one way to select the terms, so the coefficient is 1. For the second combination, since all terms are the same, there is also only one way to select the terms, so the coefficient is 1.

Therefore, the coefficient of x¹⁰ in (1 × x × x² × x³ × …)ⁿ is 1 for n=5 and n=10. For other values of n, the coefficient of x^10 will be 0, as there are no other possible combinations to achieve x¹⁰.

To learn more about coefficient here:

brainly.com/question/28975079#

#SPJ11

What is the area of this composite figure

Answers

The composite figure has an area of 24 square units.

How to determine the area of a composite figure

In this question we find the representation of a composite figure formed by the combination of four figures, a triangle and three rectangles, whose area formulas are listed below:

Rectangle

A = b · h

Triangle

A = 0.5 · b · h

Where:

A - Areab - Widthh - Height

Now we proceed to determine the area of the composite figure:

A = 2 · 3 + 0.5 · 2 · 1 + 7 · 2 + 1 · 3

A = 6 + 1 + 14 + 3

A = 24

The area of the composite figure is equal to 24 square units.  

To learn more on areas of composite figures: https://brainly.com/question/23718948

#SPJ1

Which is equivalent to (x > 5), given that x is a numeric variable. A.(x < 5) B.!(x >= 5) C.!(x <= 5) D.!(x < 5)

Answers

The numeric variable equivalent to equivalent to (x > 5) is, !(x < 5). The answer is D.

The original statement is "x > 5". The negation of this statement is "not (x > 5)", which is equivalent to "x <= 5". However, option A is the opposite of the correct answer since it says "x < 5", not "x <= 5". Option B says "not (x >= 5)", which is equivalent to "x < 5", but again, it is not the correct answer since it uses the "not greater than or equal to" symbol.

Option C says "not (x <= 5)", which is equivalent to "x > 5", but this is the opposite of the original statement. Therefore, the correct answer is D. !(x < 5), which is equivalent to "not (x is less than 5)", or "x is greater than or equal to 5". Hence, option D is correct.

To know more about numeric variable, here

brainly.com/question/17291241

#SPJ4

What is the value of n if the equation n*y^2+ 2y − 4 = 0 has exactly one root?

Answers

Answer:

0

Step-by-step explanation:

ny^2 + 2y - 4 = 0

ny^2 + 2y = 4

y(ny + 2) = 4

y = 4

ny + 2 = 4

ny = 2, 0 = 2

The only possible solution to make this expression incorrect is if 0 = 2, so n is equal to 0.

find the standard matrix of the given linear transformation from ℝ2 to ℝ2. projection onto the line y = 6x

Answers

To find the standard matrix of a linear transformation, we need to apply the transformation to the standard basis vectors of the domain and express the results in terms of the standard basis vectors of the codomain.

In this case, the linear transformation is the projection onto the line y=6x, which means that any vector in ℝ2 will be projected onto the closest point on the line.

The standard basis vectors of ℝ2 are (1,0) and (0,1), so let's apply the transformation to each of these vectors:

- (1,0) will be projected onto the point (x, 6x) that lies on the line y=6x. The closest point on the line to (1,0) is when x=0, so the projection of (1,0) onto the line is (0,0). Therefore, the first column of the standard matrix will be (0,0).
- (0,1) will be projected onto the point (x, 6x) that lies on the line y=6x. The closest point on the line to (0,1) is when x=1/6, so the projection of (0,1) onto the line is (1/6,1). Therefore, the second column of the standard matrix will be (1/6,1).

Putting these columns together, we get the standard matrix of the projection onto the line y=6x:

[0  1/6]
[0   1 ]

Learn more about the standard matrix of a linear transformation :

https://brainly.com/question/31406066

#SPJ11

Let P(n) be the statement that n! < nn where n is an integer greater than 1.
a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of theproof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f) Explain why these steps show that this formula is true whenevern is an integer greater than 1.

Answers

All positive integers n greater than 1. Therefore, we can conclude that n! < n^n for all n > 1

a) The statement P(2) is 2! < 2^2.

b) P(2) is true since 2! = 2 < 4 = 2^2.

c) The inductive hypothesis is to assume that P(k) is true for some positive integer k.

d) In the inductive step, we need to prove that P(k+1) is true, assuming that P(k) is true.

e) To complete the inductive step, we start with the assumption that P(k) is true, which means that k! < k^k. We then need to prove that (k+1)! < (k+1)^(k+1).

(k+1)! = (k+1) * k! < (k+1) * k^k (since k! < k^k by the inductive hypothesis)

< (k+1) * (k+1)^k

= (k+1)^(k+1)

Therefore, we have shown that (k+1)! < (k+1)^(k+1), and thus P(k+1) is true.

f) By completing the basis step and inductive step, we have shown that P(n) is true for all positive integers n greater than 1. Therefore, we can conclude that n! < n^n for all n > 1.

To lhttps://brainly.com/question/25108907

#SPJ11

find the length of the curve y =x4 for 0≤ x ≤1. round your answer to 3 decimal places if needed.
Only use numerical characters and decimal point
where needed. i.e. Enter the number without any
units, commas, spaces or other characters.

Answers

The length of the curve y = x^4 for 0≤ x ≤1 is approximately 1.082.

To find the length of the curve y = x^4 for 0≤ x ≤1, you'll need to use the arc length formula:

Arc length = ∫√(1 + (dy/dx)^2) dx from a to b, where a = 0 and b = 1.

First, find the derivative of y with respect to x:
y = x^4
dy/dx = 4x^3

Now, square the derivative and add 1:
(4x^3)^2 + 1 = 16x^6 + 1

Next, find the square root of the result:
√(16x^6 + 1)

Now, integrate the expression with respect to x from 0 to 1:
∫(√(16x^6 + 1)) dx from 0 to 1

Unfortunately, this integral doesn't have a closed-form solution, so we'll need to use numerical methods, such as Simpson's rule or a numerical integration calculator, to approximate the length.

Using a numerical integration calculator, the length of the curve y = x^4 for 0≤ x ≤1 is approximately 1.082.

Your answer: 1.082

To learn more about curve: https://brainly.com/question/31376454

#SPJ11

The length of the curve y = x^4 for 0≤ x ≤1 is approximately 1.082.

To find the length of the curve y = x^4 for 0≤ x ≤1, you'll need to use the arc length formula:

Arc length = ∫√(1 + (dy/dx)^2) dx from a to b, where a = 0 and b = 1.

First, find the derivative of y with respect to x:
y = x^4
dy/dx = 4x^3

Now, square the derivative and add 1:
(4x^3)^2 + 1 = 16x^6 + 1

Next, find the square root of the result:
√(16x^6 + 1)

Now, integrate the expression with respect to x from 0 to 1:
∫(√(16x^6 + 1)) dx from 0 to 1

Unfortunately, this integral doesn't have a closed-form solution, so we'll need to use numerical methods, such as Simpson's rule or a numerical integration calculator, to approximate the length.

Using a numerical integration calculator, the length of the curve y = x^4 for 0≤ x ≤1 is approximately 1.082.

Your answer: 1.082

To learn more about curve: https://brainly.com/question/31376454

#SPJ11

A stone is tossed into the air from ground level with an initial velocity of 34 m/s. Its height at time t is h(t) = 34t − 4.9t2 m. Compute the stone's average velocity over the time intervals [3, 3.01], [3, 3.001], [3, 3.0001],and[2.99, 3], [2.999, 3], [2.9999, 3]. (Round your answers to three decimal places.)T interval [3,3.01] [3,3.001] [3,3.0001]
Average Velocity ??? ???? ????
T interval [2.99,3] [2.999,3] [2.9999,3]
Average Velocity ???? ????? ????
Estimate the instataneous velocity v at t=3.
V= _____ m/s

Answers

To compute the average velocity over each time interval, we use the formula: average velocity = (h(t2) - h(t1))/(t2 - t1), where h(t) is the height function.

Using the given height function, h(t) = 34t - 4.9t^2, we calculate the average velocities:
1. [3, 3.01]:
Average Velocity = (h(3.01) - h(3))/(3.01 - 3) ≈ -17.147 m/s
2. [3, 3.001]:
Average Velocity = (h(3.001) - h(3))/(3.001 - 3) ≈ -17.194 m/s
3. [3, 3.0001]:
Average Velocity = (h(3.0001) - h(3))/(3.0001 - 3) ≈ -17.199 m/s
4. [2.99, 3]:
Average Velocity = (h(3) - h(2.99))/(3 - 2.99) ≈ -17.243 m/s
5. [2.999, 3]:
Average Velocity = (h(3) - h(2.999))/(3 - 2.999) ≈ -17.205 m/s
6. [2.9999, 3]:
Average Velocity = (h(3) - h(2.9999))/(3 - 2.9999) ≈ -17.200 m/s
To estimate the instantaneous velocity at t=3, observe the average velocities as the time intervals approach t=3:
As the intervals get closer to t=3, the average velocities appear to approach -17.2 m/s. Thus, the estimated instantaneous velocity at t=3 is:
V ≈ -17.2 m/s

FOR MORE INFORMATION ON instantaneous velocity SEE:

https://brainly.com/question/28837697

#SPJ11

Pls help! I need to find the angle measures for questions 14-17.

Answers

Answer:

3

Step-by-step explanation:

gd=14cm

dc=17cm

then,

gd-dc

14cm-17cm

0=14cm-17cm

0=-3

0+3

3

A sample of size 65 from a population having standard deviation σ= 55 produced a mean of 234.00. The 95% confidence interval for the population mean (rounded to two decimal places) is:

Answers

The 95% confident that the true population mean is between 220.26 and 247.74 when standard deviation σ= 55.

What is confidence interval?

If the statistical model used to construct the interval is reliable, a 95% confidence interval is a range of values that is calculated from a sample of data and is anticipated to contain the real population parameter with a probability of 0.95. To put it another way, we would anticipate that 95% of the confidence intervals calculated for each sample taken from the same population will contain the true population value. A broader interval will come from a greater confidence level (such as 99%), whereas a narrower gap will result from a lower confidence level (such as 90%).

The 95% confidence interval is determined by the formula:

CI = X ± z(α/2) * (σ/√n)

Now, given α/2 (α/2 = 0.025 for a 95% confidence interval).

Thus,

CI = 234.00 ± 1.96 * (55/√65)

CI = 234.00 ± 13.74

CI = (220.26, 247.74)

Hence, the 95% confident that the true population mean is between 220.26 and 247.74.

Learn more about confidence interval here:

https://brainly.com/question/13845033

#SPJ1

use the empirical rule to estimate the percentage of cold sufferers who experience symptoms for less than 9.9 days.

Answers

If Z is between -1 and 1, then the percentage is within the 68% range. If Z is between -2 and 2, then the percentage is within the 95% range. If Z is between -3 and 3, then the percentage is within the 99.7% range.

To use the empirical rule to estimate the percentage of cold sufferers who experience symptoms for less than 9.9 days, we first need to know the mean (average) and the standard deviation of the data.

Let's assume that the mean (µ) is X days and the standard deviation (σ) is Y days. The empirical rule states that for a normal distribution:
- Approximately 68% of the data falls within 1 standard deviation (σ) of the mean (µ)
- Approximately 95% of the data falls within 2 standard deviations (σ) of the mean (µ)
- Approximately 99.7% of the data falls within 3 standard deviations (σ) of the mean (µ)

Now, we want to estimate the percentage of cold sufferers who experience symptoms for less than 9.9 days. We need to determine how many standard deviations away 9.9 days is from the mean.

To do this, use the formula:

Z = (Observed Value - Mean) / Standard Deviation
Z = (9.9 - X) / Y

Once you calculate the Z score, refer to the empirical rule:
- If Z is between -1 and 1, then the percentage is within the 68% range.
- If Z is between -2 and 2, then the percentage is within the 95% range.
- If Z is between -3 and 3, then the percentage is within the 99.7% range.

Finally, based on the Z score and the empirical rule, you can estimate the percentage of cold sufferers who experience symptoms for less than 9.9 days.

To know more about empirical rule to estimate the percentage refer here:

https://brainly.com/question/23645979

#SPJ11

use the alternative form of the derivative to find the derivative at x = c (if it exists). (if the derivative does not exist at c, enter undefined.) f(x) = x3 2x2 9, c = −2

Answers

The derivative of f(x) at x = c does not exist.

To find the derivative of f(x) at x = c using the alternative form of the derivative, we first need to calculate the derivative of f(x) with respect to x.

Given that f(x) = x^3 - 2x^2 + 9, we can find the derivative of f(x) using the power rule and the constant multiple rule. The power rule states that the derivative of x^n, where n is a constant, is n*x^(n-1). The constant multiple rule states that the derivative of a constant multiplied by a function is equal to the constant multiplied by the derivative of the function.

Applying the power rule and constant multiple rule to f(x), we get:

f'(x) = 3x^2 - 4x

Now, we can evaluate f'(x) at x = c, which in this case is x = -2:

f'(-2) = 3(-2)^2 - 4(-2)

= 3(4) + 8

= 12 + 8

= 20

So, the derivative of f(x) at x = -2 is 20. However, we are asked to find the derivative at x = c = -2 using the alternative form of the derivative.

The alternative form of the derivative states that the derivative of a function at a specific point is equal to the limit of the difference quotient as x approaches the given point. In other words, the derivative at x = c is equal to the limit of (f(x) - f(c))/(x - c) as x approaches c.

Substituting c = -2 into the alternative form of the derivative, we get:

f'(-2) = lim(x->-2) (f(x) - f(-2))/(x - (-2))

However, if we try to evaluate this limit, we get an indeterminate form of 0/0. This means that the derivative of f(x) at x = -2 does not exist, as the limit of the difference quotient is undefined. Therefore, the main answer is that the derivative of f(x) at x = c does not exist.

For more questions like Derivative click the link below:

https://brainly.com/question/25324584

#SPJ11

An aquarium 6 ft long, 4 ft wide, and 2 ft deep is full of water. (Recall that the weight density of water is 62.5 lb/ft3.)(a) Find the hydrostatic pressure on the bottom of the aquarium. (give in answer in lb/ft2)(b) Find the hydrostatic force on the bottom of the aquarium. (give in answer in lb)(c) Find the hydrostatic force on one end of the aquarium. (give in answer in lb)

Answers

The hydrostatic pressure on the bottom of the aquarium is 4015 lb/ft2. The hydrostatic pressure on the bottom of the aquarium is 96360 lb. The hydrostatic pressure on one end of the aquarium is 97440 lb.

(a) The hydrostatic pressure on the bottom of the aquarium can be found using the formula P = ρgh, where P is the pressure, ρ is the density of the fluid, g is the gravitational acceleration, and h is the depth. In this case, ρ = 62.5 lb/ft3, g = 32.2 ft/s2, and h = 2 ft. The pressure is:

P = ρgh = 62.5 lb/ft3 × 32.2 ft/s2 × 2 ft = 4015 lb/ft2

So the hydrostatic pressure on the bottom of the aquarium is 4015 lb/ft2.

(b) The hydrostatic force on the bottom of the aquarium can be found using the formula F = P A, where F is the force, P is the pressure, and A is the area. The area of the bottom of the aquarium is 6 ft × 4 ft = 24 ft2. The force is:

F = P A = 4015 lb/ft2 × 24 ft2 = 96360 lb

So the hydrostatic force on the bottom of the aquarium is 96360 lb.

(c) The hydrostatic force on one end of the aquarium can be found using the formula F = ρgAh, where A is the area of the end, which is 6 ft × 2 ft = 12 ft2. The depth of the end is 4 ft. So the force is:

F = ρgAh = 62.5 lb/ft3 × 32.2 ft/s2 × 12 ft2 × 4 ft = 97440 lb

So the hydrostatic force on one end of the aquarium is 97440 lb.

Know more about hydrostatic pressure here:

https://brainly.com/question/28206120

#SPJ11

4. Solve the equation for x: 3(x-4) = 9 + 2x

Answers

Answer:

X = 21

Step-by-step explanation:

Following the distributive property, on the left side we get 3x-12 = 9 + 2x.

Combine like terms, from 3x, remove 2x and add 12 to 9. This gives us X = 21.

the game of four square on a 12 foot by 12-foot court you square is a 6foot by 6 foot what is the area if four square not including you court

Answers

Answer:

108 ft ^2

Step-by-step explanation:

12^2 - 6^2 = 108

Find the component form of v given its magnitude and the angle it makes with the positive x-axis. Sketch v.
Magnitude: ||v||=7/2||
Angle: θ=150∘

Answers

The component form of v, we need to determine its x and y components. We can use trigonometry to do this. Therefore, the component form of v is: v = (-7/4, (7/4)√3)

We know that the magnitude of v is 7/2, so we can use this information to find the length of the hypotenuse of the right triangle formed by the x and y components of v. Let h be the hypotenuse:

h = ||v|| = 7/2

Next, we can use the angle θ to determine the ratios of the sides of the right triangle:

cos(θ) = adj/h = x/7/2
sin(θ) = opp/h = y/7/2

where x is the x component of v and y is the y component of v.

Substituting in the given values, we have:

cos(150∘) = x/7/2
sin(150∘) = y/7/2

Simplifying these equations, we get:

x = -7/4
y = (7/4)√3

Therefore, the component form of v is:

v = (-7/4, (7/4)√3)

To sketch v, we can plot the point (-7/4, (7/4)√3) in the Cartesian plane. The x component is negative, so the point will be in the third quadrant. The y component is positive and greater than the x component, so the point will be above the x-axis and closer to the y-axis. The resulting vector should be pointing in the direction of 150∘ from the positive x-axis.

Visit here to learn more about vector  : https://brainly.com/question/13322477
#SPJ11

1) 2( x + $3.60 ) = $19.40
2) 45.93 + 112 + (−61.24)
3) 20x + 2 > −98
4) 2/5 (4x - 8)
5) On a school field trip, the number of students (y) is always proportional to the number of adults (x). In one group there are 96 students and 8 adults. What is the constant of proportionality between this relationship?

Answers

Answer:

1. 2(x+3.60) = 19.40

Divide both sides by 2:

x+3.60 = 9.70

Subtract 3.60 from both sides:

x = 6.10

Answer: 6.10

2. 45.93 + 112 + (−61.24)

45.93 + 112 = 157.93

157.93 - 61.24 = 96.69

Answer: 96.69

3. 20x + 2 > −98

Subtract 2 from both sides:

20x > −100

Divide both sides by 20:

x > −5

Answer: x > −5

4. 2/5 (4x - 8)

= 8x/5 - 16/5

Answer: 8x/5 - 16/5

5. On a school field trip, the number of students (y) is always proportional to the number of adults (x). In one group there are 96 students and 8 adults. What is the constant of proportionality between this relationship?

The constant of proportionality is the number that, when multiplied by the number of adults, gives the number of students. In this case, the constant of proportionality is 96/8 = 12.

Answer: 12

Suppose AB = AC, where B and C are nxp matrices and A is invertible. Show that B=C. Is this true, in general, when A is not invertible?OA. (AB) 1 =B-1A-1OB. (A-1) = (AT) -1OC. A-¹A=IOD. (A-1)-¹=A

Answers

In general, when A is not invertible, we cannot guarantee that B = C. Since we can not apply the inverse of A, we cannot cancel out the A matrix on both sides, and thus cannot prove that B = C in such cases.

We are given that AB = AC, where B and C are nxp matrices and A is invertible. We need to show that B = C and discuss whether this is true when A is not invertible.

Step 1: Since A is invertible, we can apply the inverse of A to both sides of the equation AB = AC. We will multiply both sides on the left by A⁻¹.

Step 2: Applying A⁻¹ to both sides, we get A⁻¹(AB) = A⁻¹(AC).

Step 3: Using the associative property of matrix multiplication, we can rearrange the parentheses as follows: (A⁻¹A)B = (A⁻¹A)C.

Step 4: According to the property of the inverse matrix, A⁻¹A = I (the identity matrix). Therefore, we have IB = IC.

Step 5: Since the identity matrix does not change the matrix it is multiplied with, we get B = C.

So, in general, when A is not invertible, we cannot guarantee that B = C. Without the ability to apply the inverse of A, we cannot cancel out the A matrix on both sides, and thus cannot prove that B = C in such cases.

Know more about matrix here:

https://brainly.com/question/28777961

#SPJ11

I do not understand how to get b and what if i have to get c?

Answers

The value of b is given as follows:

b = 5.

How to define a linear function?

The slope-intercept representation of a linear function is given by the equation presented as follows:

y = mx + b

The coefficients of the function and their meaning are described as follows:

m is the slope of the function, representing the change in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, which is the initial value of the function, i.e., the numeric value of the function when the input variable x assumes a value of 0. On a graph, it is the value of y when the graph of the function crosses the y-axis.

When two lines are parallel, they have the same slope, hence:

4x + 5y = 1

5y = -4x + 1

y = -4x/5 + 1.

Hence:

y = -4x/5 + b.

When x = 4, y = 3, hence the intercept is given as follows:

3 = -16/5 + b

b = 31/5

Hence, in standard format, the equation will be given as follows:

y = -4x/5 + 31/5

4x/5 + y = 31/5

4x + 5y = 31

Meaning that the value of b is of 5.

More can be learned about linear functions at https://brainly.com/question/24808124

#SPJ1

Answer Immediaetly Please

Answers

The length of side x is given as follows:

[tex]x = 2\sqrt{7}[/tex]

What are the trigonometric ratios?

The three trigonometric ratios are the sine, the cosine and the tangent, and they are defined as follows:

Sine of angle = length of opposite side to the angle divided by the length of the hypotenuse.Cosine of angle = length of adjacent side to the angle divided by the length of the hypotenuse.Tangent of angle = length of opposite side to the angle divided by the length of the adjacent side to the angle.

In the context of this problem, we have that the parameters are given as follows:

Side x is the hypotenuse.The square root of 7 is opposite to the angle of 30º.

Hence we apply the sine of 30º to obtain the length x, as follows:

sin(30º) = sqrt(7)/x

[tex]\frac{1}{2} = \frac{\sqrt{7}}{x}[/tex]

[tex]x = 2\sqrt{7}[/tex]

More can be learned about trigonometric ratios at brainly.com/question/24349828

#SPJ1

Members of a softball team raised $1952. 50 to go to a tournament. They rented a bus

Eor $983. 50 and budgeted $57 per player for meals. Write and solve an equation

_which can be used to determine p, the number of players the team can bring to the

Cournament.

Answers

You would create an equation using the total money raise, subtract the 983 and then divide by 57

Find the output for the graph
y = 12x - 8
when the input value is 2.
y = [?]

Answers

Answer:

y = 16

Step-by-step explanation:

You are in putting 2, meaning that x = 2. Plug in the corresponding numbers to the corresponding variables:

[tex]y = 12x - 8\\x = 2\\\\y = 12(2) - 8[/tex]

Remember to follow the order of operations, PEMDAS. PEMDAS stands for:

Parenthesis

Exponents (& Roots)

Multiplications

Divisions

Additions

Subtractions

~

First, multiply 12 with 2, then subtract 8:

[tex]y = 12(2) - 8\\y = (12 * 2) - 8\\y = (24) - 8\\y = 16[/tex]

y = 16 is your answer.

~

Learn more about PEMDAS, here:

https://brainly.com/question/26499272

a = 2.7 cm, b = 12 cm and c = 9.2 cm. If m is the midpoint of SR Calculate the size of angle MwwT (correct to 1 d.p.) ​

Answers

The size of angle MWT is calculated to 1 d.p. to give

37.8 degrees

How to find angle MWT

The size of angle MWT is solved using trigonometry tan

tan (angle MWT) = (distance midpoint of a to edge w) / b

Where distance midpoint of a to edge w is calculated using Pythagoras theorem

(distance midpoint of a to edge w)² = (1/2 a)² + c²

(distance midpoint of a to edge w)² = (1.35)² + 9.2²

distance midpoint of a to edge w = 9.3

tan (angle MWT) = 9.3 / 12

angle MWT = arc tan (9.3/12) = 37.776

angle MWT = 37.8 degrees to 1 d.p.

Learn more about angles at

https://brainly.com/question/25716982

#SPJ1

solve the given initial-value problem. x' = 1 2 0 1 − 1 2 x, x(0) = 4 9 x(t)

Answers

The solution of the initial-value problem of x'=[1/2 0; 1 -1/2] x is x(t) = [4/3 * e^(t/2); 5/3 * e^t + 8/3 * e^(t/2)].

To solve the given initial value problem x'=[1/2 0; 1 -1/2] x with x(0)=[4;9], we need to find the solution of the system of differential equations.

The characteristic equation of the matrix [1/2 0; 1 -1/2] is λ^2 - (3/2)λ + (1/4) = 0, which has two distinct roots, λ_1 = 1/2 and λ_2 = 1.

The general solution of the system is x(t) = c_1 * [1; 2] * e^(λ_1t) + c_2 * [0; 1] * e^(λ_2t), where c_1 and c_2 are constants to be determined using the initial condition x(0) = [4; 9].

Substituting the values of λ_1, λ_2, and x(0) in the above equation, we get c_1 = 4/3 and c_2 = 5/3.

Therefore, the solution of the initial-value problem is x(t) = [4/3 * e^(t/2); 5/3 * e^t + 8/3 * e^(t/2)].

To know more about initial-value problem:

https://brainly.com/question/30547172

#SPJ4

--The given question is incomplete, the complete question is given

" Solve the given initial-value problem x' is matrix of 2x2 form, x' = [1/2  0   1  −1/2] x,  x(0) = [4 9] of 2x1 matrix form. find x(t)"--

h(x)=3x-5 and g(x)=2x+1 find gh(x)

Answers

Required function g(h(x)) is 6 x - 9.

What is Functions?

A function is a relationship between a set of outputs referred to as the range and a set of  inputs referred to as the domain, with the condition that each input is contain  to exactly one output. An input x corresponding to a function f output, which is represented by f(x).

What is Composite Function?

We can combine two functions so that the outputs of one function become the inputs of the other if we have two functions is known as composite function . A composite function is defined by this action,that the function g f(x) = g(f(x)) is known as a composite function. This is occasionally referred to as a function of a function. g f can also be written as g o f instead.

We have, h(x)=3 x-5 and g(x)=2 x+1.

So, g(h(x)) = g(3 x - 5) = 2(3 x - 5) + 1 = 6 x - 9.

Learn more about Composite Functions here,

https://brainly.com/question/10687170

#SPJ1

Which equation represents the linear relationship between the x-values and the y values in the table ?
A. y = -x + 9
B. y = 3x +5
C. y = -2x + 8
D. y = 4x + 3

Answers

Answer: The answer is B, y= 3x+5

You invest $2,000 in a Certificate of Deposit (CD) with an APR 2.25% for 3 years
that compounds annually. What is the balance after 3 years?

Answers

The balance after 3 years on a Certificate of Deposit with an APR of 2.25% that compounds annually is $2,163.05.

What is meant by balance?

Balance refers to the equality between two expressions or equations, where both sides have the same value. It is often used in solving equations or evaluating algebraic expressions.

What is meant by compounds?

A compound refers to a combination of two or more simple mathematical statements or propositions, connected by logical operators such as "and", "or", or "not". It is used in logic and boolean algebra.

According to the given information:

To calculate the balance after 3 years on a Certificate of Deposit with an APR of 2.25% that compounds annually, we can use the formula:

A = P(1 + r/n)^{n*t}

Where:

A = the balance after t years,

P = the principal amount invested,

r = the annual interest rate as a decimal,

n = the number of times the interest is compounded per year,

t = the number of years

Plugging in the given values, we get:

P = $2,000r = 0.0225 (2.25% expressed as a decimal)

n = 1 (compounded annually)

t = 3 years,

[tex]A = 2,000(1 + 0.0225/1)^{1*3}[/tex]

[tex]A = 2,000(1 + 0.0225)^3[/tex]

[tex]A = 2,000(1.0225)^3[/tex]

A = $2,163.05 (rounded to the nearest cent)

Therefore, the balance after 3 years on a Certificate of Deposit with an APR of 2.25% that compounds annually is $2,163.05.

To know more about balance visit:

brainly.com/question/23271078

#SPJ1

What % is:

a) 12 out of 20

b) 62 out of 80


What is:

a) 12% of 125

b) 18.3 of 28

Answers

a. 12 out of 20 is 60%

b 62 out of 80 is 77.5%

a. 12% of 125 is 15

b. 18.3% of 28 is 5.12.

How to find the percentage of values?

The percentage can be found by dividing the value by the total value and then multiplying the result by 100.

Hence, let's find the percentage of the following:

a.

12 / 20 × 100 = 1200 / 20 = 60%

b.

62 / 80 × 100 = 6200 / 80 = 77.5%

Therefore,

12% of 125 = 12 / 100 × 125 = 1500 / 100 = 15

18.3% of 28 = 18.3 / 100 × 28 = 512.4 / 100 = 5.12

learn more on percentage here: https://brainly.com/question/29284499

#SPJ1

The positions of a particle moving in the xy-plane is given by the parametric equations x=t3−3t2 and y=2t3−3t2−12t. For what values of t is the particle at rest?

Answers

The particle is at rest when the velocity is zero.

To find the values of t, you need to calculate the first derivatives of the parametric equations and set them equal to zero.

Main answer: The particle is at rest for t = 0 and t = 2.


1. Calculate the first derivatives of x(t) and y(t):
dx/dt = 3t² - 6t
dy/dt = 6t² - 6t - 12

2. Set the derivatives equal to zero and solve for t:
3t² - 6t = 0
6t² - 6t - 12 = 0

3. Factor the equations:
t(3t - 6) = 0
6(t² - t - 2) = 0

4. Solve for t:
t = 0, (3t - 6) = 0
t² - t - 2 = 0

5. From the first equation, t = 0 or t = 2.
From the second equation, use the quadratic formula:
t = (1 ± √(1 + 8))/2
t ≈ 1.41, -1.41

6. The particle is at rest for t = 0 and t = 2. The other values do not correspond to a stationary point.

To know more about quadratic formula click on below link:

https://brainly.com/question/9300679#

#SPJ11

Other Questions
Which of these was the third of the major events that stimulated an increase in the size of the human population?a) the discovery of vaccinesb) the discovery of antibioticsc) the discovery of vaccines and the discovery of antibioticsd) the advent of agriculturee) the Industrial Revolution I need help. If you can answer this I will give you brainliest!!!!! required information skip to question [the following information applies to the questions displayed below.] suresh company reports the following segment (department) income results for the year. department m department n department o department p department t total sales $ 74,000 $ 40,000 $ 67,000 $ 50,000 $ 35,000 $ 266,000 expenses avoidable 13,300 40,600 23,000 17,500 44,100 138,500 unavoidable 54,600 16,800 4,900 39,100 14,700 130,100 total expenses 67,900 57,400 27,900 56,600 58,800 268,600 income (loss) $ 6,100 $ (17,400) $ 39,100 $ (6,600) $ (23,800) $ (2,600) a. if the company plans to eliminate departments that have sales less than avoidable costs, which department(s) would be eliminated? an inductor with an inductance of 4.50 hh and a resistance of 8.00 is connected to the terminals of a battery with an emf of 6.00 vv and negligible internal resistance. Just after the circuit is completed, at what rate is the battery supplying electrical energy to the circuit? A ball (0.410 kg) is kicked at an angle of 44.0 above the horizontal axis (above the +x-axis). The initial speed of the ball is 24.2 m/s. Ignoring air resistance, determine the momentum of the ball just before it hits the ground. determine whether the series is convergent or divergent by expressing sn as a telescoping sum (as in example 7). [infinity] cos 4 n cos 4 n 2 n = 1 15 A car of mass 750 kg is accelerating up a slope of a certain angle to the horizontal where sin theta = 1/70 at 1.5 m/ s. Ignoring any road resistance, find the tractive force of the engine. Consider the internal reflection of light at the interface between water and ice.What is the minimum critical angle, in degrees, at which you will get total reflection at this interface?\Thetac= _______Values are for medium: nwater= 1.333 ; nice= 1.309 Determine the magnitude of force at the pin A and in the cable BC needed to support the 410-lb load. Neglect the weight of the boom AB. (Figure 1) Determine the magnitude of force at the pin A. Express your answer to three significant figures and include the appropriate units. Determine the force in the cable BC. Express your answer to three significant figures and include the appropriate units. At the beginning of the year, a company predicts total overhead costs of $560,000. The company applies overhead using machine hours and estimates it will use 1,400 machine hours during the year. What amount of overhead should be applied to Job 65A if that job uses 13 machine hours during January? Overhead applied to Job 65A _____ Rank these spaceships on the basis of their length as measured by their respective captains_ Rank from largest to smallest: To rank items as equivalent; overlap them. 1. Lo 100 m U = 0.8c 2. Lo 200 U = 0.4c3. Lo 100 m 0.4c 4. Lo 400 m U = 0.2c 5. Lo 200 0.8c 6. Lo 100 m U = 0.9c largest smallest ____________ ________ This module connects the ""outside world"" to the MPC by facilitating marketplace and customer-contact activities. A. The MPS B. The Production Plan C. Demand Management D. Sales and operation planning (SOP) find and calculate the y- component of the center of mass for the following three masses: m1 = 3.96 kg at the origin. m2 = 3.03 kg at (4.0,5.4) m. m3 = 5.04 kg at (1.0,2.8) m. The Secretary of State must review a complaint filed against a notary, and if there arereasonable grounds to believe a violation has occurred the matter is referred to aspecial agent for investigation. Following the investigation, the Secretary of Statemust:A) Suspend the notary.B) Place a red check by the notarys name in the searches database.C) The agent will submit a report.D) All the above.E) None of the above. A right rectangular prism has a height of 17.5 centimeters. The area of the base of the prism is 18 square centimeters. What is the volume, in cubic centimeters, of the right rectangular prism? (6.GM.2) consider the chemical equation and equilibrium constant at 25 c : 2cof2(g)co2(g) cf4(g) , k=2.2106 calculate the equilibrium constant for the following reaction at 25 c : 2co2(g) 2cf4(g)4cof2(g) C++ question: Jason opened a coffee shop selling coffee, cheese cakes, and coffee beans. Coffee is sold at the shop in two sizes: small (9 oz, $1.5) and large (12 oz, $1.9). Cheese cakes cost $3 per slice. Coffee beans are sold with $0.6 per oz. Write a menu-driven program that will make the coffee shop operational. Your program should allow the user to do the following: Choose among coffee, cakes, or beans to purchase. Buy coffee in any size and in any number of cups. Buy cheese cakes in any number of slices. Buy coffee beans in any amount. At any time show the total number of cups of each size sold, total number of slices of cakes sold, and total amount of coffee beans sold. At any time show the total amount of coffee sold. At any time show the total money made. Your program should consist of at least the following functions: a function to show the user how to use the program, a function to sell coffee, a function to sell cakes, a function to sell coffee beans, a function to show the number of cups of each size of coffee, the number of slices of cheese cakes, and the amount of coffee beans sold, a function to show the total amount of coffee sold, a function to show the total money made. Your program should not use any global variables. Special values such as coffee cup sizes and cost of a coffee cup must be declared as named constants. suppose demand is given by p=50-1/3 qd and supply is given by p=10 1/5 qs. producer surplus is________.a. 947.5b. 927.5c. 937.5d. 957.5 item 2 for time t0, the acceleration of an object moving in a straight line is given by a(t)=ln(3 t4). what is the net change in velocity from time t=1 to time t=5 ? How can marketers use social media and mobile marketing to engage customers? what challenges do marketers face?