Find the profit function if cost and revenue are given by C(x) = 150 +5.8x and R(x) = 9x -0.01x?

Answers

Answer 1

The profit function is; P(x) = -0.01·x² + 3.2·x + 150

What is a profit?

Profit is the amount gained following a business transaction, which is the difference between the amount received as payment for doing a business transaction, within a specified period, known as the revenue and the amount amount spent or invested in doing the business, including the fixed and variable expenses, which is the cost of the business.

Therefore; Profit = Revenue - Cost

The cost and the revenue functions, obtained from a similar question on the internet are;

The cost function is; C(x) = 150 + 5.8·x

The profit function is; R(x) = 9·x - 0.01·x²

The profit function, P(x), is therefore; P(x) = 9·x - 0.01·x² - (150 + 5.8·x) = -0.01·x² + 3.2·x + 150

P(x) = -0.01·x² + 3.2·x + 150

Learn more on the profit function here: https://brainly.com/question/10719260

#SPJ1


Related Questions

Save Acme Annuities recently offered an annuity that pays 3.9% compounded monthly. What equal monthly deposit should be made into this annuity in order to have $100,000 in 12 years? The amount of each deposit should be $ (Round to the nearest cent.)

Answers

To have $100,000 in 12 years with a 3.9% compounded monthly annuity, the equal monthly deposit needed would be approximately $653.44.

To calculate the monthly deposit, we can use the formula for future value of an annuity:

FV = P * ((1 + r/n)^(n*t) - 1) / (r/n),

where FV is the desired future value ($100,000), P is the monthly deposit, r is the annual interest rate (3.9% or 0.039), n is the number of compounding periods per year (12 for monthly compounding), and t is the number of years (12).

Plugging in the values into the formula:

100,000 = P * ((1 + 0.039/12)^(12*12) - 1) / (0.039/12).

Solving this equation for P gives us the monthly deposit of approximately $653.44.

To learn more about future value of an annuity, click here: brainly.com/question/28195816

#SPJ11

a. If the infinite curve y =e-3x, x ≥ 0, is rotatedabout the x-axis, find the area of the resulting surface.in sq. units
b. A group of engineers is building a parabolic satellite dishwhose shape will be formed by rotating the curve y =ax2 about the y-axis. If the dish isto have a 10 ft diameter and a maximumdepth of 4 ft, find the value ofa and the surface area of the dish.
a =
SA = ft2

Answers

a) The area of the surface obtained by rotating the curve y = e^(-3x) about the x-axis cannot be determined without limits of integration. b) The value of a in the parabolic satellite dish is 0.1, and the surface area is approx. 33.51 ft².

a) To find the area of the surface obtained by rotating the curve y = e^(-3x) about the x-axis, we need to know the limits of integration. Without the specified limits, we cannot calculate the exact surface area.

b) The equation of the parabolic satellite dish is y = ax^2. We are given that the dish has a 10 ft diameter, which means the maximum x-coordinate is 5 ft (half of the diameter). Additionally, the maximum depth of 4 ft corresponds to the minimum y-coordinate (-4 ft).

To find the value of a, we substitute the coordinates (5, -4) into the equation: -4 = a(5)^2. Solving for a, we get a = -4/25 = 0.1.

The surface area (SA) of the dish can be calculated using the formula: SA = 2π∫[a, b] x * √(1 + (dy/dx)^2) dx, where [a, b] represents the limits of integration. Since the dish is symmetric, we only need to calculate the surface area for one half of the parabola.

Plugging in the values, the surface area is approximately 33.51 ft².

Learn more about Integration here: brainly.com/question/31744185

#SPJ11

The shifter tool Another manipulable graph object The shifter tool is designed to let you answer questions by shifting entire lines or points along a line (or both) from one position to another. You can select any part of the line and drag it to the left or to the right. Once you have moved the point or line far enough, it will snap into one of a few possible positions. Shift the blue demand line (labeled D) to the right. Then position the point along the line so that it reflects the same price as the point along the original line. Note: Select and drag the curve to the desired position. The curve will snap into position, so if you try to move a curve and it snaps back to its original position, just drag it a little farther. ? 10 D Oud ja 10 D 8 7 PRICE (Dolars per pint) 5 4 o 2 D 2 0 1 2 5 0 D 10 QUANTITY (Pints of blueberries) After adjusting the location of the line, you now see two lines on the graph; the initial position of the line is now labeled, and the new position is labeled 0 0 1 o 10 0 QUANTITY (Pints of blueberries) and the new position is After adjusting the location of the line, you now see two lines on the graph; the initial position of the line is now labeled labeled Can there be more than one shiftable line? Sometimes you will be given two shiftable lines, in which case you may be required to shift just one, both, or neither of these lines, depending on the instructions. Each graph object with its own separate palette icon will be graded individually. Note: When you are given two lines, the point representing their intersection does not have a palette icon, and this point cannot be moved independently of the lines. Given the following demand (D) and supply (5) Nnes, shift one or both lines so that the new intersection represented by the black point (plus symbol) occurs at (7,5). Note: Select and drag one or both of the curves to the desired position. The curves will snap into position, so if you try to move a curve and it snaps back to its original position, just drag it a little farther Note: Select and drag one or both of the curves to the desired position. The curves will snap into position, so if you try to move a curve and it snaps back to its original position, just drag it a little farther. 10 D S PRICE (Dolars per pint) 4 D 7 S 8 PRICE (Dollars per pint) 5 4 3 D 2 - 0 6 10 0 1 2 3 4 5 QUANTITY (Pints of blueberries) True or False: If you are given a graph with two shiftable lines, the correct answer will always require you to move both lines. O True False

Answers

False. If you are given a graph with two shiftable lines, the correct answer may or may not require you to move both lines. The instructions will specify which lines need to be shifted based on the question or problem at hand. It is possible to only move one line while keeping the other line unchanged, depending on the specific scenario.

If you are given a graph with two shiftable lines, the correct answer does not always require you to move both lines. The answer is false.

The statement provided, "If you are given a graph with two shiftable lines, the correct answer will always require you to move both lines," is false. When presented with a graph containing two shiftable lines, the task or question may specify whether you need to shift one, both, or neither of the lines. The instructions will guide you on which lines to move and how to position them.

In the given scenario, the question asks you to shift one or both of the demand (D) and supply (S) lines to achieve a new intersection represented by the black point at coordinates (7, 5). The goal is to adjust the lines in such a way that they intersect at the desired point.

The flexibility of the shifter tool allows for individual adjustments of each line. Depending on the specific instructions or objectives of the question, it may be necessary to move only one line to reach the desired outcome. Therefore, it is not always the case that both lines need to be moved in a graph with two shiftable lines.

Learn more about graphs here:

https://brainly.com/question/17267403

#SPJ11

A factory has production function Q = f(L, K). In year 1: 212 = f(78, 144) In year 5: 309 = f(117, 216) This production function displays increasing returns to scale.
True
False

Answers

The production function does not display increasing returns to scale. The statement is False.

Increasing returns to scale occur when increasing the inputs by a certain proportion leads to a proportionately larger increase in output. In other words, if we double the inputs, the output more than doubles.

In this case, we can compare the input quantities between year 1 and year 5. The labor input increased from 78 to 117 (an increase of about 50%), while the capital input increased from 144 to 216 (an increase of 50% as well). However, the output increased from 212 to 309 (an increase of about 46%).

Since the increase in output is less than the proportional increase in inputs, we can conclude that the production function does not exhibit increasing returns to scale. It could instead exhibit constant returns to scale or even decreasing returns to scale, depending on the specific relationship between inputs and output.

to learn more about scale click here:

brainly.com/question/29807828

#SPJ11

In the circle, NA= PA, MO perpendicular to NA, RO perpendicular to PA and MO = 10 ft.
What is PO?
100 ft.
5 ft.
20 ft.
10 ft.

Answers

The radius of the circle = RO=MO (since NA=PA). Therefore PO=1/2 MO=1/2*10=5 ft

Given that,NA = PA and MO ⊥ NA, RO ⊥ PA and MO = 10 ft. 5 ft. 10 ft.Since MO ⊥ NA and RO ⊥ PA,

Therefore MO and RO are the heights of ∆NMA and ∆PRA respectively.And, NA = PA => ∆NMA ≅ ∆PRA

Therefore, AM = AR ...(1)Also, from the question,

MO = 10 ft.

=> Area of ∆NMA = (1/2) * NA * MO = (1/2) * NA * 10 ft. = 5NA ...(2)Similarly, RO = 10 ft.

=> Area of ∆PRA = (1/2) * PA * RO = (1/2) * PA * 10 ft. = 5PA ...(3)Now, from (1), AM = ARAnd, from (2) and (3), 5NA = 5PA

=> NA = PAAnd, AM = AR => 2AM = NA + PA = 2NA => AM = NA = 10 ft.

OA = ON + NA = 10 + 10 = 20 ft. Hence, the answer is 5fts

To learn more about : radius

https://brainly.com/question/24375372

#SPJ8

Find the relative maximum and minimum values of f(x,y) = 6x3 - y2 + 6xy + 2.

Answers

Answer:

(0,0) is a saddle point

(-1,-3) is a local maximum

Step-by-step explanation:

Find critical points

[tex]f(x,y)=6x^3-y^2+6xy+2\\\\\frac{\partial f}{\partial x}=18x^2+6y\rightarrow18x^2+6y=0\\\\\frac{\partial f}{\partial y}=-2y+6x\rightarrow6x-2y=0[/tex]

[tex]6x-2y=0\\3x=y[/tex]

[tex]18x^2+6y=0\\18x^2+6(3x)=0\\18x^2+18x=0\\x^2+x=0\\x(x+1)=0\\x=0,-1[/tex]

Therefore, the critical points are [tex](0,0)[/tex] and [tex](-1,-3)[/tex].

Determine value of Hessian Matrix at critical points

[tex]H=\bigr(\frac{\partial^2 f}{\partial x^2}\bigr)\bigr(\frac{\partial^2 f}{\partial y^2}\bigr)-\bigr(\frac{\partial^2 f}{\partial x \partial y}\bigr)^2\\\\H=(36x)(-2)-6^2\\\\H=-72x-36[/tex]

For (0,0):

[tex]H=-72(0)-36=-36 < 0[/tex], so (0,0) is a saddle point

For (-1,-3):

[tex]H=-72(-1)-36=72-36=36 > 0[/tex], so (-1,-3) is either a local maximum or minimum. Since [tex]\frac{\partial^2 f}{\partial x^2}=36x=36(-1)=-36 < 0[/tex], then (-1,-3) is a local maximum.

Given the initial value problem y = {v+t’e'. IS152, YO) = 0. t With exact solution y(t)=t? (e' – e). 1) Use Taylor's method of order two with h=0.1 to approximate the solution, and compare it with the actual values of y. (4 Marks) 2) Use the answers generated in part (1) and linear interpolation to approximate y at the following I. y(1.04) II. y(1.55) III. y(1.97)

Answers

The approximation of the solution using Taylor's method of order two with h = 0.1 is y(1.1) ≈ 0.005. The values of y(1.04) ≈ 0.0006, y(1.55) ≈ 0.0395, and y(1.97) ≈ 0.0163.

To approximate the solution using Taylor's method of order 2 with h = 0.1 and compare with the exact values of y, we can follow the steps below:

Step 1:

The second derivative of y with respect to t is given as follows:

y'' = [(2/t) y + t'² e^t]'

y''= [2y/t - (2/t²) y + 2t'e^t + t'² e^t]'

y''= [(2/t) - (2/t²)]y + [2e^t + 2t'e^t + 2t'e^t + 2t t'e^t]

y''= [(2/t) - (2/t²)]y + [4t'e^t + 2t t'e^t]

y''= [(2/t²) y + (4/t) y] + [4t'e^t + 2t t'e^t]

y''= (2/t²)[ty' + 2y] + 2t'e^t[2 + t]

Step 2:

Using Taylor's method of order two with h = 0.1, we can approximate the solution of the problem as follows:

y(t + h) = y(t) + hy'(t) + (h²/2) y''(t)

y(t + h)= y(t) + h[(2/t)y + t'² e^t] + (h²/2)[(2/t²) y + (4/t) y] + (h²/2) [4t'e^t + 2t t'e^t]

y(t + h)= y(t) + h(2/t)y + h t'² e^t + (h²/t²) y + (2h/t) y + (h²/2) [4t'e^t + 2t t'e^t]

y(t + h)= y(t) + [2h/t + (h²/t²)]y + h t'² e^t + (h²/2) [4t'e^t + 2t t'e^t]where,

y(1) = 0, t = 1, h = 0.1

y(1.1) = y(1) + [2(0.1)/1 + (0.1²/1²)](0) + 0.1 (2/1)(0) + (0.1²/2) [4(0) + 2(1)(0)]

y(1.1) = 0.005

The approximation of the solution using Taylor's method of order two with h = 0.1 is y(1.1) ≈ 0.005.

To find y(1.04), y(1.55), and y(1.97), we will use the linear interpolation method.

Step 3:

The values of y(1.1) and y(1) are used to find the value of y(1.04) as follows:

y(1.04) = y(1) + [(1.04 - 1)/(1.1 - 1)](y(1.1) - y(1))

y(1.04)= 0 + [(1.04 - 1)/(1.1 - 1)](0.005 - 0)

y(1.04)≈ 0.0006

Therefore, y(1.04) ≈ 0.0006.

Step 4:

The values of y(1.1) and y(1.55) are used to find the value of y(1.97) as follows:

y(1.55) = y(1) + [(1.55 - 1)/(1.1 - 1)](y(1.1) - y(1))

y(1.55)= 0 + [(1.55 - 1)/(1.1 - 1)](0.005 - 0)

y(1.55)≈ 0.0395

Similarly, y(1.97) = y(1.55) + [(1.97 - 1.55)/(1.1 - 1.55)](y(1.1) - y(1.55))

y(1.97) = 0.0395 + [(1.97 - 1.55)/(1.1 - 1.55)](0.005 - 0.0395)

y(1.97)≈ 0.0163

Therefore, y(1.04) ≈ 0.0006, y(1.55) ≈ 0.0395, and y(1.97) ≈ 0.0163.

The question should be:

Given the initial value problem y' = (2/t)y+t’²e^t. 1≤t≤2, y(1)=0,  

With exact solution y(t)=t² (e^t – e).

1) Use Taylor's method of order two with h=0.1 to approximate the solution, and compare it with the actual values of y.

2) Use the answers generated in part (1) and linear interpolation to approximate y at the following

I. y(1.04)

II. y(1.55)

III. y(1.97)

To learn more about linear interpolation: https://brainly.com/question/26174353

#SPJ11

The Temple Owls football team will have a match with Duke on September 2, 2022. Suppose that Temple has a 40% chance of winning the game. College football games cannot end in a tie.
a. What is the random variable associated with this game? [1 point]
b. What is the mutually exclusive event in this case? [1 point]
c. Construct a well-labeled probability distribution table based on the outcomes of this game. [2 points]

Answers

In statistics and probability theory, a random variable is a variable that takes on different values based on the outcome of a random event or experiment. It represents a numerical outcome associated with a particular event or outcome of interest.

a) The random variable associated with this game is the number of wins the Temple Owls football team obtains. The number of wins that the team can get is a discrete random variable.

b) The mutually exclusive event in this case is that either the Temple Owls team wins or Duke wins. There is no overlap between these two events.

c) The probability distribution table is as follows: xP(x)0.6 1-0.42 0.4

The above probability distribution table is well-labeled. The outcomes in the first column and the respective probabilities associated with the Temple Owls football team winning in the second column.

To know more about random variable visit:

https://brainly.com/question/30789758

#SPJ11

This gives us a well-labeled probability distribution table based on the outcomes of the game.

a. The random variable associated with this game is the number of possible outcomes. It is denoted by X.

b. In this case, the mutually exclusive event is that Temple will win or Duke will win.

This is because there are only two possible outcomes and only one of them can occur at a time.

c. The probability distribution table of the outcomes of the game is shown below:

OutcomesProbabilityTemple winning 0.4

Duke winning0.6

As stated in the question, college football games cannot end in a tie.

Hence, there are only two possible outcomes of the game, i.e., either Temple wins or Duke wins.

Therefore, the random variable associated with this game is X, the number of possible outcomes.

The mutually exclusive event is Temple winning or Duke winning, which implies that there is no chance of both teams winning or the game ending in a tie.

The probability of Temple winning is 0.4, while the probability of Duke winning is 0.6.

The probabilities add up to 1, which means that one of these events must occur.

This gives us a well-labeled probability distribution table based on the outcomes of the game.

To know more about probability distribution, visit:

https://brainly.com/question/29062095

#SPJ11

what is the solution tolog7(x – 4) = log7(4x 5) ?x = –3x = –2x = –1x = 0there is no solution.

Answers

The solution to the equation log7(x – 4) = log7(4x + 5) is x = -3.

To find the solution to the equation log7(x – 4) = log7(4x + 5), we can use the property of logarithms that states that if log base a of b equals log base a of c, then b must equal c.

In this case, we have log7(x – 4) = log7(4x + 5). By applying the property mentioned above, we can conclude that (x – 4) must equal (4x + 5).

Now, let's solve for x:

x – 4 = 4x + 5

Rearranging the equation:

x - 4x = 5 + 4

-3x = 9

Dividing both sides by -3:

x = 9 / -3

x = -3

Therefore, the solution to the equation log7(x – 4) = log7(4x + 5) is x = -3.

The options you provided (-2, -1, and 0) are not solutions to the equation.

Learn more about logarithm here:

https://brainly.com/question/30226560

SPJ11

Which one of the correlation coefficient (t) values between two variables suggest high multicolinearity? 0.59 -0.80 0.62 -0.20

Answers

The correlation coefficient (r) measures the strength and direction of the linear relationship between two variables. High multicollinearity, which refers to a high degree of correlation between independent variables in a regression model, can be indicated by correlation coefficients close to 1 or -1. Therefore, the correlation coefficient value of -0.80 suggests high multicollinearity.

The correlation coefficient (r) ranges from -1 to +1. A value of +1 indicates a perfect positive linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear relationship between the variables.

In the given options, the correlation coefficient value of -0.80 suggests a strong negative linear relationship between the two variables. This value indicates a high degree of correlation, which can be indicative of multicollinearity when considering multiple independent variables in a regression model.

On the other hand, the correlation coefficient values of 0.59, 0.62, and -0.20 suggest moderate to weak linear relationships between the variables, which may not indicate high multicollinearity.

Learn more about correlation coefficients  here: brainly.com/question/29704223

#SPJ11

Let ⊂ℝ5U⊂R5 be the subspace generated by (1,1,1,0,1)(1,1,1,0,1), (2,1,0,0,1)(2,1,0,0,1), and (0,0,1,0,0)(0,0,1,0,0). Let ⊂ℝ5V⊂R5 be the subspace generated by (1,1,0,0,1)(1,1,0,0,1), (3,2,0,0,2)(3,2,0,0,2), and (0,1,1,1,1)(0,1,1,1,1).
(a) Determine a basis of ∩U∩V.
(b) Determine the dimension of +U+V.

Answers

(a) Basis of ∩U∩V: (1, 0, -2) and (0, 1, 3) form a basis for the intersection of subspaces U and V.

(b) Dimension of +U+V: The dimension of the sum of subspaces U and V is 3, as there are 3 linearly independent vectors in the basis of +U+V.

(a) To determine the basis of ∩U∩V, we solve the equation:

(1,1,1,0,1)a + (2,1,0,0,1)b + (0,0,1,0,0)c = k(1,1,0,0,1) + l(3,2,0,0,2) + m(0,1,1,1,1)

Simplifying the equation component-wise, we obtain the following system of equations:

a + 2b = k + 3l

b + c = k + l + m

a + c = k

b = m

a = l

Solving this system of equations, we find that b = m, a = l, c = k - a, and k = 2l + 3m.

Therefore, a basis of ∩U∩V is given by the vectors (1, 0, -2) and (0, 1, 3).

(b) To determine the dimension of +U+V, we need to find a basis for U + V. We already have the basis for U, and now we will find the basis for V.

We solve the equation:

(1,1,0,0,1)a + (3,2,0,0,2)b + (0,1,1,1,1)c = k(1,1,1,0,1) + l(2,1,0,0,1) + m(0,0,1,0,0)

Simplifying the equation component-wise, we get the following system of equations:

a + 3b = k + 2l

b + c = k + l + m

a = k

c = m

a + b = k

Solving this system of equations, we find a = k, b = k - a, c = 2a - 3b - m, and l = a + b - k.

Therefore, a basis of V is given by the vectors (1, 0, -3), (0, 1, 1), and (0, 0, 1).

Combining the basis vectors of U and V, we have (1, 1, 1, 0, 1), (2, 1, 0, 0, 1), (0, 0, 1, 0, 0), (1, 0, -3), (0, 1, 1), and (0, 0, 1).

We can observe that these vectors are linearly independent.

Thus, the dimension of +U+V is 6, as there are 6 linearly independent vectors in the basis of +U+V.

To learn more about subspaces visit : https://brainly.com/question/13045843

#SPJ11

a restaurant menu has a prix fixe complete dinner that consists of an appetizer, entree, beverage, and dessert. you have a choice of five appetizers, ten entrees, three beverages, and six desserts. how many possible complete dinners are possible?

Answers

There are 9000 possible complete dinners that can be created.

To find the total possible complete dinners that are possible, we need to multiply the number of choices available for each course. Thus, the total possible combinations of dinners that can be created are as follows:Total Possible Dinners = (Number of Appetizer Choices) x (Number of Entree Choices) x (Number of Beverage Choices) x (Number of Dessert Choices)Total Possible Dinners = 5 x 10 x 3 x 6 Total Possible Dinners = 9000Hence, the total number of possible complete dinners that are possible is 9000.

Know more about combinations here:

https://brainly.com/question/20211959

#SPJ11


Prove by mathematical induction that 8n−3nis divisible by 5 for
any nonnegative integer n.

Answers

we have proven that 8ⁿ - 3ⁿ is divisible by 5 for any non-negative integer 'n'.

To prove that 8ⁿ - 3ⁿ is divisible by 5 for any non-negative integer n using mathematical induction, we will show that the statement holds for the base case and then demonstrate that if it holds for an arbitrary value of 'n', it also holds for 'n + 1'.

Base Case (n = 0):

Let's consider the base case where 'n = 0'. We need to show that 8⁰ - 3⁰ is divisible by 5.

Since any number subtracted by 1 is still divisible by 5, we can rewrite the expression as:

1 - 1 = 0.

Since 0 is divisible by any number, including 5, the base case is satisfied.

Inductive Step:

Assuming that the given statement holds for 'n = k', let's prove that it holds for 'n = k + 1'.

We assume that [tex]8^k - 3^k[/tex] is divisible by 5 and want to prove that [tex]8^{k+1} - 3^{k+1}[/tex] is also divisible by 5.

Starting with the expression to prove:

[tex]8^{k+1} - 3^{k+1}[/tex]

We can rewrite this expression using the properties of exponents:

[tex]8 * 8^k - 3 * 3^k[/tex]

Simplifying further:

[tex]8 * 8^k - 3 * 3^k = 8 * (8^k - 3^k) + (8 - 3) * 3^k[/tex]

Using the assumption that [tex]8^k - 3^k[/tex] is divisible by 5:

Let's say [tex]8^k - 3^k = 5m[/tex], where m is an integer.

Substituting this into our expression:

[tex]8 * (8^k - 3^k) + (8 - 3) * 3^k = 8 * (5m) + 5 * 3^k[/tex]

Using the distributive property:

[tex]8 * (5m) + 5 * 3^k = 5 * (8m + 3^k)[/tex]

Since [tex](8m + 3^k)[/tex] is also an integer, let's call it 'p'. Therefore, we have:

5 * p

Thus, we have shown that [tex]8^{k+1}- 3^{k+1}[/tex] is divisible by 5, which completes the inductive step.

By the principle of mathematical induction, the statement holds for all non-negative integers 'n'. Hence, we have proven that 8ⁿ - 3ⁿ is divisible by 5 for any non-negative integer 'n'.

Learn more about mathematical induction here

https://brainly.com/question/12949287

#SPJ4

A school has 3 floors. Each floor has 23 classrooms. Each classroom has 4 Windows. How many windows are there in all?

Answers

The total number of windows in the school is 276

How to determine the number of windows in the school

From the question, we have the following parameters that can be used in our computation:

Floors = 3

Classrooms = 23

Windows = 4

using the above as a guide, we have the following:

All Windows = Floors * Classrooms * Windows

substitute the known values in the above equation, so, we have the following representation

All Windows = 3 * 23 * 4

Evaluate

All Windows = 276

Hence, the number of windows in the school is 276

Read more about expression at

https://brainly.com/question/15775046

#SPJ1

We have 38 subjects (people) for an experiment. We play music with lyrics for each of the 38 subjects. During the music, we have the subjects play a memorization game where they study a list of 25 common five-letter words for 90 seconds. Then, the students will write down as many of the words they can remember. We also have the same 38 subjects listen to music without lyrics while they study a separate list of 25 common five-letter words for 90 seconds, and write down as many as they remember. This is an example of: ____________

Answers

We also have the same 38 subjects listen to music without lyrics while they study a separate list of 25 common five-letter words for 90 seconds and write down as many as they remember. This is an example of: a controlled experiment.

A controlled experiment is an investigation that is carried out under highly controlled conditions in which the independent variable is manipulated. It entails the use of both control and experimental groups in order to determine the impact of the independent variable on the dependent variable. In addition, the objective of a controlled experiment is to remove any sources of bias or confounding variables that may impact the results. Controlled experiments involve randomization and the use of a control group. Subjects are randomly allocated to a control group or an experimental group in the randomization process. The control group serves as the baseline against which the results of the experimental group are compared.

To know more about randomization, visit:

https://brainly.in/question/41197795

#SPJ11

Calculate the trade discount (in $) and trade discount rate (as a %). Round your answer to the nearest tenth of a percent List Price Trade Discount Trade Discount Rate Net Price $2.89 $1 % $2.16

Answers

The trade discount is $0.73 and the trade discount rate is approximately 25.3%. These values represent the amount of discount given and the percentage by which the list price is reduced to arrive at the net price.

In this case, the list price is given as $2.89 and the net price is $2.16. To calculate the trade discount, we subtract the net price from the list price: Trade Discount = List Price - Net Price = $2.89 - $2.16 = $0.73.

To find the trade discount rate as a percentage, we divide the trade discount by the list price and multiply by 100: Trade Discount Rate = (Trade Discount / List Price) * 100. Substituting the values, we get Trade Discount Rate = ($0.73 / $2.89) * 100 ≈ 25.3%.

Learn more about discount here:

https://brainly.com/question/29205061

#SPJ11

for the following system, if you isolated x in the first equation to use the substitution method, what expression would you substitute into the second equation? −x 2y = −6 3x y = 8

Answers

If you isolated x in the first equation to use the substitution method, you would substitute the expression -6/(2y) into the second equation.

To use the substitution method, you first need to isolate x in one of the equations. In this case, we can isolate x in the first equation by adding 2y to both sides and then dividing both sides by -1. This gives us the expression x = (-6)/(2y).

We can then substitute this expression into the second equation. This gives us the equation 3 * ((-6)/(2y)) * y = 8.

Simplifying this equation, we get the equation -9y = 8. Dividing both sides of this equation by -9, we get the equation y = -8/9.

Therefore, the expression that you would substitute into the second equation is -6/(2y).

Here is a diagram of the solution:

[tex](-6)/(2y)[/tex]

3x + y = 8

x = [tex](-6)/(2y)[/tex]

-9y = 8

y = [tex]\frac{-8}{9}[/tex]

Learn more about substitution method here:

brainly.com/question/14619835

#SPJ11

factor completely 3x2 + 9x − 3.
a. 3(x2 3)
b. 3(x2 3x − 1)
c. 3x(x2 3x − 1)
prime

Answers

Step-by-step explanation:

To factor the quadratic expression 3x^2 + 9x - 3 completely, we can start by factoring out the greatest common factor (GCF) of all the terms. The GCF of 3x^2, 9x, and -3 is 3. Factoring out the GCF, we get:

3x^2 + 9x - 3 = 3(x^2 + 3x - 1)

Now we need to factor the quadratic expression inside the parentheses. Since the coefficient of x^2 is 1, we can look for two numbers that multiply to -1 (the constant term) and add to 3 (the coefficient of x). These two numbers are -1 and 4. So we can write:

x^2 + 3x - 1 = (x - 1)(x + 4)

Substituting this back into our original expression, we get:

3x^2 + 9x - 3 = 3(x^2 + 3x - 1) = 3(x - 1)(x + 4)

So the complete factorization of 3x^2 + 9x - 3 is 3(x - 1)(x + 4).

The following set of data is from a sample of n = 6.
8 9 7 8 2 13
a. Compute the mean, median, and mode.
b. Compute the range, variance, and standard deviation
a. Compute the mean, median, and mode.
Mean = ________Type an integer or decimal rounded to four decimal places as needed.)
Compute the median
Median= ________(Type an integer or a decimal. Do not round.)
What is the mode? Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. The mode(s) is/are _______ (Type an integer or a decimal. Do not round. Use a comma to separate answers as needed.)
B. There is no mode for this data set.
b. Compute the range
Range = ____ (Type an integer or a decimal. Do not round.)
Compute the variance.
S^2= _______ (Round to three decimal places as needed.)
Compute the standard deviation.
S=______(Round to three decimal places as needed.)

Answers

The mean, median, and mode are Mean = 7.83, Median = 8 and Mode = 8

The range, variance, and standard deviation are Range = 11, Variance = 10.47 and standard deviation = 3.24

a. Compute the mean, median, and mode.

From the question, we have the following parameters that can be used in our computation:

8 9 7 8 2 13

The mean is calculated as

Mean = Sum/Count

So, we have

Mean = (8 + 9 + 7 + 8 + 2 + 13)/6

Mean = 7.83

The median is the middle value

So, we have

2  7  8  8  9  12

So, we have

Median = (8 + 8)/2

Median = 8

The mode is the data with the highest frequency

So, we have

Mode = 8

b. Compute the range, variance, and standard deviation

The range is calculated as

Range = Highest - Lowest

So, we have

Range = 13 - 2

Range = 11

For the variance, we have

Variance = 10.47

So, the standard deviation is

standard deviation = √10.47

standard deviation = 3.24

Read more about standard deviation at

https://brainly.com/question/28383764

#SPJ4

Write an expression for the product of even integer x and the next even integer.

Answers

The expression for the product of an even integer x and the next even integer can be written as 2x(x+1).

To find the product of an even integer x and the next even integer, we need to consider that consecutive even integers have a difference of 2.

Let's assume the even integer x is represented by 2k, where k is an integer.

The next even integer can be expressed as 2k+2.

Now, to find the product of x and the next even integer, we multiply 2k by (2k+2), resulting in 2k(2k+2).

Simplifying the expression, we can distribute the 2k across the terms inside the parentheses:

2k(2k+2) = 4[tex]k^2[/tex] + 4k.

Therefore, the expression for the product of an even integer x and the next even integer is 4[tex]k^2[/tex] + 4k, where x is represented by 2k.

This expression represents the multiplication of any even integer x by the next even integer.

The resulting expression is a quadratic polynomial in terms of k, which represents the product of the even integer x and the next even integer.

Learn more about Expression here:

https://brainly.com/question/11701178

#SPJ11

Sketch the region whose area is given by the integral and evaluate the integral---
/int from pi/4 to 3pi/4 /int from 1 to 2 r dr d(theta)

Answers

The integral /int from pi/4 to 3pi/4 /int from 1 to 2 r dr d(theta) represents the double integral of a region in polar coordinates.

The region can be visualized as a sector of a circle in the polar plane, bounded by the angles pi/4 and 3pi/4, and by the radii 1 and 2. The first integral /int from 1 to 2 r dr integrates over the radial direction, while the second integral /int from pi/4 to 3pi/4 d(theta) integrates over the angular direction.

To evaluate the integral, we integrate the radial part first. Integrating r with respect to r yields (1/2)r^2. Plugging in the limits of integration, we get [(1/2)(2)^2] - [(1/2)(1)^2] = 2 - 1/2 = 3/2.

Next, we integrate the angular part. Integrating d(theta) with respect to theta gives theta. Evaluating the limits of integration, we have (3pi/4) - (pi/4) = pi/2.

Finally, multiplying the results of the radial and angular integrals, we have the value of the double integral as (3/2) * (pi/2) = 3pi/4. Thus, the integral evaluates to 3pi/4.

Learn more about polar coordinates here: brainly.com/question/31904915

#SPJ11

Find each of the following: 5+8 a. L 2-²1/15-² (S-1)(s+2)) (5) (5) b. £ 2s-3 s²+2s+ 5/

Answers

The value of 5+8 can be calculated as 13.

To evaluate the expression 5+8, we simply add the two numbers together. Adding 5 and 8 gives us the result of 13. The calculation can be written as:

5 + 8 = 13

There are no additional factors or variables in this expression, so the answer remains constant. Therefore, the value of 5+8 is 13.

For more questions like Variables click the link below:

https://brainly.com/question/17344045

#SPJ11

The tides in a harbor follow a 12-hour cycle. A Captain Highliner wants to take his ship out to catch some fish but needs 5 meters of water to clear a sandbar at the entrance to the harbor. At low tide, the depth of water over the bar is 2 meters and at high tide, the depth of water is 9 meters. Assume that it is currently low tide. a) When is the first time that Captain Highliner can leave the harbor? (2) b) How long does Captain Highliner have before the water over the bar is too shallow to return? (2) c) How quickly is the water rising/falling at each of these two times?

Answers

a) Captain Highliner can leave the harbor 12 hours before high tide.

b) The time duration Captain Highliner has before the water becomes too shallow is 12 hours.

c) At the first critical time, the water level rises by 3 meters in 12 hours, so the rate of change is 0.25 meters per hour.

At the second critical time, the water level falls by 3 meters in 12 hours, so the rate of change is 0.25 meters per hour.

The tides in a harbor follow a 12-hour cycle. The first time Captain Highliner can leave the harbor is when the water level reaches a depth of 5 meters over the sandbar. Captain Highliner has a certain time window to return before the water over the bar becomes too shallow.

We need to calculate time duration and the rate at which the water is rising or falling at these two critical times.

a) To determine the first time Captain Highliner can leave the harbor, we need to find when the water level reaches 5 meters over the sandbar.

Currently, the water level is 2 meters at low tide, and it follows a 12-hour cycle. The difference between the low tide depth and the desired depth is 5 - 2 = 3 meters.

Since it takes 12 hours for the tide to go from low to high, the water level increases by 3 meters in 12 hours. Therefore, Captain Highliner can leave the harbor 12 hours before high tide.

b) To calculate the time duration Captain Highliner has before the water becomes too shallow to return, we need to find when the water level will be 5 meters over the sandbar again.

From the previous calculation, we know that it takes 12 hours for the tide to go from low to high. Therefore, the time duration Captain Highliner has before the water becomes too shallow is 12 hours.

c) To determine the rate at which the water is rising or falling at these two critical times, we can calculate the average rate of change of the water level. The rate of change is given by the difference in water level divided by the time taken.

At the first critical time, the water level rises by 3 meters in 12 hours, so the rate of change is 3 meters / 12 hours = 0.25 meters per hour.

At the second critical time, the water level falls by 3 meters in 12 hours, so the rate of change is 3 meters / 12 hours = 0.25 meters per hour.

To know more about tides refer here:

https://brainly.com/question/32029538#

#SPJ11

"Given sec = -s/s and the terminal arm of angle is in the third quadrant.

Sketch a diagram using the cartesian plane.

Answers

In the given scenario, we have sec(theta) = -s/s, where theta is an angle in the third quadrant. We can plot a point (-s, -s) in the third quadrant of the Cartesian plane to represent the given scenario.

The Cartesian plane consists of two perpendicular number lines, the x-axis and the y-axis. In the third quadrant, both the x and y coordinates are negative. The terminal arm of the angle starts from the origin (0,0) and extends towards the third quadrant.

Since sec(theta) is equal to -s/s, it implies that the x-coordinate of the point on the terminal arm is -s, while the y-coordinate is -s as well. Therefore, we can plot a point (-s, -s) in the third quadrant of the Cartesian plane to the show given scenario.

To learn more about Cartesian plane, click here: brainly.com/question/27927590

#SPJ11




Problem 15.73. Give a combinatorial proof for this identity: n m Σ(0)(...)-("") (" *) k-r r=0

Answers

The combinatA combinatorial proof for the identity Σ(n-m+r choose r) (r=0 to m) = (n+1 choose m+1) is as follows:

Consider a set of (n+1) distinct objects labeled from 0 to n. We want to count the number of ways to choose a subset of (m+1) objects from this set.

On the left-hand side of the identity, we can break down the sum as follows:
Σ(n-m+r choose r) (r=0 to m)

Each term in the sum represents choosing a different number of objects from the first (n-m) objects. The term (n-m+r choose r) represents choosing r objects from the first (n-m) objects, where r ranges from 0 to m.

Now, let's consider the right-hand side of the identity, (n+1 choose m+1). This represents choosing (m+1) objects from the set of (n+1) objects.

We can interpret the left-hand side as counting the number of ways to choose a subset of (m+1) objects from a set of (n+1) objects using combinatorial reasoning. The right-hand side represents the same count directly by using the binomial coefficient. Therefore, both sides of the identity represent the same quantity, and the combinatorial proof verifies the given identity.

To know more about  combinatorial proof,visit:
https://brainly.com/question/32415345
#SPJ11

Let 3 = 3+6i and w = a + bi where a, b e R. Without using a calculator, ka) determine and hence, b in terms of a such that is real; (4 marks) w (b) determine arg{2 - 9}.

Answers

(a) So, b = 0.

(b) arg(2 - 9i) ≈ arctan((-4.5)/1).

(a) To determine the value of b in terms of a such that w is real, we need to consider the imaginary part of w. Let's express w as w = a + bi.

Since w is real, the imaginary part of w, which is bi, must equal zero. Therefore, we have:

bi = 0

This implies that b = 0, since any number multiplied by zero is zero.

So, b = 0.

(b) To determine arg(2 - 9), we need to find the argument or angle of the complex number 2 - 9i.

First, let's express 2 - 9i in the form a + bi. In this case, a = 2 and b = -9.

The argument of a complex number can be found using the arctan function:

arg(a + bi) = arctan(b/a)

In our case, arg(2 - 9i) = arctan((-9)/2).

Without a calculator, we can approximate this angle using trigonometric identities. We can rewrite the fraction (-9)/2 as (-4.5)/1, which gives us a right triangle with opposite side -4.5 and adjacent side 1.

Using the trigonometric identity tan(theta) = opposite/adjacent, we can find the angle theta:

tan(theta) = (-4.5)/1

theta = arctan((-4.5)/1)

Therefore, arg(2 - 9i) ≈ arctan((-4.5)/1).

For more such questions on complex number

https://brainly.com/question/29747482

#SPJ8

In the expression, (2 + 4) x 3 – 5, you should multiply the 3 and the 5 first. t or f

Answers

Answer:

False.

Step-by-step explanation:

According to the order of operations (also known as PEMDAS), you should perform the multiplication and division operations before addition and subtraction. Therefore, in the expression (2 + 4) x 3 - 5, you should first perform the multiplication operation between 3 and (2 + 4), and then subtract 5 from the result.

So, following the order of operations, we get:

[tex](2 + 4) \times 3 - 5 = 6 \times 3 - 5 = 18 - 5 = 13[/tex]

Therefore, the value of the expression is 13.

In a survey of 2453 adults in a recent year, 1468 say they have made a New Year's resolution Construct 90% and 95% confidence intervals for the population proportion Interpret the results and compare the width of the confidence interval CE of the confidence The 90% confidence intervall for the population proportion pin (D) (Round to the decimal places as needed) The 95% confidence interval for the population proportion pis (D (Round to the decimal places a meded) With the given confidence, it can be said that the of ads who say they live made a New Year Compare the width of the contidence intervals. Choose the corect answer below OA. The confidence intervallo wider OB. The 95% confidence intervw is widest OC. The contidence intervals are the same width D. The confidence intervals Carnot be compared.

Answers

(a) The confidence interval of 90% is 0.598 ± 0.014 ≈ (0.584, 0.614).

(b) The confidence interval of 95% is 0.598 ± 0.019 ≈ (0.582, 0.617)

(c) The proportion of adults who say they made a New Year resolution is between 0.584 and 0.614 with 90% confidence, and between 0.582 and 0.617 with 95% confidence.

(d) The 95% confidence interval is wider than the 90% confidence interval. So the answer is option B, the 95% confidence interval is wider.

To construct confidence intervals for population proportions, we can use the formula:

Confidence Interval = Sample Proportion ± Margin of Error

where the margin of error is determined by the desired confidence level and sample size.

Given:

Sample size (n) = 2453

Number of respondents who made a New Year's resolution (x) = 1468

1) The 90% confidence interval:

First, calculate the sample proportion ( p):

p = x / n = 1468 / 2453 ≈ 0.598

Margin of Error = Z * √(( p * (1 -  p)) / n)

Using a Z-value for a 90% confidence level, which is approximately 1.645:

Margin of Error = 1.645 * √((0.598 * (1 - 0.598)) / 2453)) ≈ 0.016

Therefore the confidence interval of 90% is 0.598 ± 0.014 ≈ (0.584, 0.614)

2) The 95% confidence interval:

Using a Z-value for a 95% confidence level, which is approximately 1.96:

Margin of Error = 1.96 * √((0.598 * (1 - 0.598)) / 2453) ≈ 0.019

0.598 ± 0.019 ≈ (0.582, 0.617)

Therefore the confidence interval of 95% is 0.598 ± 0.019 ≈ (0.582, 0.617)

3) With the given confidence, it can be said that the proportion of adults who say they made a New Year resolution is between 0.584 and 0.612 with 90% confidence, and between 0.582 and 0.614 with 95% confidence.

4) The correct answer is (B) The 95% confidence interval is wider. The width of a confidence interval is determined by the margin of error, which is influenced by the desired confidence level. A higher confidence level requires a larger margin of error, resulting in a wider interval.

Therefore, the 95% confidence interval is wider than the 90% confidence interval.

Learn more about Margin of Error:

https://brainly.com/question/30404882

#SPJ4

Complete Question:

In a survey of 2453 adults in a recent year, 1468 say they have made a New Year's resolution.

Construct 90% and 95% confidence intervals for the population proportion Interpret the results and compare the width of the confidence interval.

1) The 90% confidence interval for the population proportion p is _ (Round to the decimal places as needed)

2) The 95% confidence interval for the population proportion p is__ (Round to the decimal places a needed)

3) With the given confidence, it can be said that the of _ adults who say they  made a New Year resolution is a __.

4) Compare the width of the confidence intervals.

Choose the correct answer below

A) The 90% confidence interval is wider

B) The 95% confidence interval is wider

C) The confidence intervals are the same width

D) The confidence intervals cannot be compared

Write the double integral ∬ R

f(x,y)dA as an iterated integral (or a sum of multiple iterated integrals) using the order of integration DO NOT EVALUATE

Answers

To write the double integral ∬ R f(x,y)dA as an iterated integral, we need to determine the limits of integration for each variable  and the function f(x,y) being integrated. Let's assume that R is defined by a ≤ x ≤ b and g(x) ≤ y ≤ h(x). Then, we can express the double integral as:

∬ R f(x,y)dA = ∫a^b ∫g(x)^h(x) f(x,y) dy dx

Alternatively, we could integrate with respect to y first, then x. In this case, we would have:

∬ R f(x,y)dA = ∫c^d ∫p(y)^q(y) f(x,y) dx dy

where c ≤ y ≤ d and p(y) ≤ x ≤ q(y).

Note that the choice of the order of integration depends on the shape of the region R and the function f(x,y) being integrated.

Learn more about function from

https://brainly.com/question/11624077

#SPJ11

Let f(t) be a T-periodic signal and let g(t) be the signal given by:

g(t) = 1/a ∫ f(u) du.

Here we assume that 0 < a
(a) Show that g(t) is T-periodic.
(b) Determine the Fourier coefficients of g(t).
(c) What can you tell about g(t) for the case that a = T?

Answers

Given that f(t) is a T-periodic signal and g(t) is the signal given by:g(t) = 1/a ∫ f(u) du.We assume that 0 < aNow let's look into the questions.

(a) Show that g(t) is T-periodic.

We need to show that the signal g(t) is T-periodic. The integral of the function f(t) from u = 0 to u = T is equal to the integral of the function f(t) from u = T to u = 2T. Hence, the signal g(t) has a period T. Therefore, g(t) is T-periodic.

(b) Determine the Fourier coefficients of g(t).

We can calculate the Fourier coefficients of the signal g(t) using the formula:

cn = (1/T) ∫ g(t) e^(-j2πnt/T) dt = (1/T) ∫ (1/a ∫ f(u) du) e^(-j2πnt/T) dt

cn = (1/aT) ∫∫ f(u) e^(-j2πnt/T) du dt

cn = (1/aT) ∫ f(u) ∫ e^(-j2πnt/T) dt du

cn = (1/aT) ∫ f(u) [Tδ(n)] du

cn = (1/a)δ(n) ∫ f(u) du

Here, we have used the property that ∫ e^(-j2πnt/T) dt = Tδ(n).

Hence, the Fourier coefficient of the signal g(t) is given by cn = (1/a)δ(n) ∫ f(u) du.

(c) What can you tell about g(t) for the case that a = T?

If a = T, then the signal g(t) becomes:

g(t) = 1/T ∫ f(u) du

The signal g(t) is the average value of the signal f(t) over one period T. If f(t) is periodic with a period of T, then the signal g(t) is a constant function.

Know more about T-periodic signal:

https://brainly.com/question/31976126

#SPJ11

Other Questions
Question 1: 1 2/3 + 2 1/4 + 2 1/2 = Question 2: 4 + 2 1/3 + 1 1/2 =Please answer both questions! Rearrange the equation so uuu is the independent variable.-12u+13=8w-3 How is Lincolns speeches different from the other Modern presidential addresses Channing Corporation makes two products (A1 and B2) that require direct materials, direct labor, and overhead. The following data refer to operations expected for next month.A1 B2 TotalRevenue $ 220,000 $ 660,000 $ 880,000 Direct material 90,000 180,000 270,000 Direct labor 64,000 152,000 216,000 Overhead: Direct-material related 72,900 Direct-labor related 69,120 Required:Channing uses a two-stage cost allocation system, It uses direct-material costs to allocate direct-materials related overhead and direct-labor costs to allocate direct-labor related overhead costs.a. Compute the direct-material related overhead rate for next month.b. Compute the direct-labor related overhead rate for next month.c. What is the total overhead allocated to product A1 next month?d. What is the total overhead allocated to product B2 next month? y-5=4x and y=4x-5 has no solution true of false? nerves meaningbrainles If y varies directly as x, and y = 6 when x = 4, find y when x = 12.y = Running at an average rate of 10 m/s, a sprinter ran to the end of a track and then jogged back to the starting point at an average of 5 m/s. The sprinter took 60 s to run to the end of the track and jog back. Find the length of the track.d=300md is equal to 300 md=200md is equal to 200 md=600md is equal to 600 md=150md is equal to 150 m what is the approximate radius of a sphere with a volume of 900 cm squared A 12 cmB 36 cmC 18cmD 6cm Please Help. What expression is equivalent to 6( t - 5 ) + 3A. 6t - 2B. 6t - 12C. 3 ( 2t - 11 )D. 3 ( 2t + 9 ) On the map of Africa, the star is marking which of the following countries? Cool-Ices balance sheet for 30 November follows. Use it and the following information to prepare a cash budget for Cool-Ice for December.80% of sales are on account, of which half are collected in the month of the sale, 49% are collected the following month and 1% are never collected and are written off as bad debts.All purchases of materials are on account. Cool-Ice pays for 70% of purchases in the month of purchase and 30% in the following month.All other costs are paid in the month incurred.Cool-Ice is making monthly interest payments of 1% (12% per year) on a $20 000 long-term loan.Cool-Ice plans to pay the $500 of taxes owed as of 30 November in the month of December. Income tax expense for December is zero.40% of processing and set-up costs, and 30% of marketing and general administration costs, are depreciation.Cool-IceBalance sheet as of 30 NovemberAssetsCash$587Accounts receivable$4 800Less: Allowance for bad debts964 704InventoriesDirect materials169Finished goods974Fixed assets$190 000Less: Accumulated depreciation55 759134 241Total assets$140 675Liabilities and equityAccounts payable$696Taxes payable500Interest payable200Long-term debt20 000Ordinary shares10 000Retained earnings109 279Total liabilities and equity$140 675 Many executive department heads are elected in their own right, not appointed by the governor. How can that affectthe governor's ability to direct them? Why?I Verify the equation: (cos x + 1)/(sin^3 x) = (csc x)/(1 - cos x) An investor holds a bond with a face value of $2,000, a coupon rate of 4%, and semi-annual payments that matures on 15/01/2021. How much will the investor receive on 15/01/2021?Select one:a.$2,080b.$40c.$2,000d.$80e.$2,040 which statement best discribes the shape of the graph? the graph is skewed left. the graph is skewed right. the graph is nearly symmetrical. the graph is perfectly symmetrical. Beer bottles are filled so that they contain an average of 355 ml of beer in each bottle. Suppose that the amount of beer in a bottle is normally distributed with a standard deviation of 8 ml. [You may find it useful to reference the z table.]a. What is the probability that a randomly selected bottle will have less than 354 ml of beer? (Round intermediate calculations to at least 4 decimal places, "z" value to 2 decimal places, and final answer to 4 decimal places.)b. What is the probability that a randomly selected 6-pack of beer will have a mean amount less than 354 ml? (Round intermediate calculations to at least 4 decimal places, "z" value to 2 decimal places, and final answer to 4 decimal places.)c. What is the probability that a randomly selected 12-pack of beer will have a mean amount less than 354 ml? (Round intermediate calculations to at least 4 decimal places, "z" value to 2 decimal places, and final answer to 4 decimal places.) Number 5 please helpppppppppp 10 points Karin has 7 more pieces of candy than Danny. Danny has d pieces of candy. Karin uses the expression 7 + d to figure out how many pieces of candy she has.How many pieces of candy does Karin have if d = 4?A. 2B. 28C. 3D. 11 Solve the system of equations.5y - 4x = -72y + 4x = 14X=y =