Answer:
Well potential energy is when an object is not moving, kinetic energy is when energy is made when an object is moving. So basically the way you can investigate the transformation of the energy of potential and kinetic is that, for example, a ball is being pushed down a hill. Ar first there is potential energy because the ball is not moving. Then there is kinetic energy because the ball is being pushed.
Explanation:
so basically what i'm saying as that as the energy of a ball moving than that's kinetic energy, Something that doesn't move always has potential energy.
A certain electrical circuit contains a battery with three cells, wires, and a light bulb. Which of the following would cause the bulb to shine less brightly?
A. decrease the resistance of the circuit
B. increase the resistance of the circuit
why is it difficult to lift out the bucket form well
because of gravitional pull
If you add a light bulb to the circuit, the filament in the bulb will resist the flow of
electrons and convert energy into____and_____
a.)light and heat
b.)electrons and neutrons
c.)energy and matter
d.)electrons and protons
Answer:
Light and heat!
Explanation:
This is correct<3
Answer:
light and heat
Explanation:
i love science
A storm front moves in and Rachel and Pam notice the column of mercury in the barometer rises only to 736 mm. Assume the density of mercury is 13, 000 kg/m 3
(a) What is the change in air pressure?
(b) What if their barometer was filled with water instead of mercury, how high does the column rise? Density of water = 1000 kg/m
Answer:
a
[tex]\Delta P = 7558.6 \ Pa[/tex]
b
[tex]h_1 = 10 \ m[/tex]
Explanation:
From the question we are told that
The position of the column of mercury in the barometer is [tex]h = 736 \ mm = 0.76 \ m[/tex]\
The density of mercury is [tex]\rho = 13,000 \ kg / m^3[/tex]
Generally the pressure of the atmosphere at that column is mathematically represented as
[tex]P = \rho * g * h[/tex]
=> [tex]P =13 000 * 9.8 * 0.736[/tex]
=> [tex]P = 93766.4 \ Pa[/tex]
Generally the atmospheric pressure at sea level (Generally the pressure before the change in level of the mercury column) is [tex]P_a = 101325 \ Pa[/tex]
Generally the change in air pressure is mathematically represented as
[tex]\Delta P = P_a - P[/tex]
=> [tex]\Delta P = 101325 - 93766.4[/tex]
=> [tex]\Delta P = 7558.6 \ Pa[/tex]
Generally the height which the column will rise to is mathematically evaluated as
[tex]h_1 = \frac{P}{ \rho_w * g }[/tex]
Here [tex]\rho_w[/tex] is the density of water with value [tex]\rho_w = 1000 \ kg/m^3[/tex]
So
[tex]h_1 = \frac{ 93766.4}{ 1000 * 9.8 }[/tex]
=> [tex]h_1 = 10 \ m[/tex]
Two spheres of equal mass, A and B, are projected off the edge of a 1.0 m bench. Sphere A has a horizontal velocity of 10 m/s and sphere B has a horizontal velocity of 5 m/s.
__ 5. If both spheres leave the edge of the table at the same instant, sphere A will land
a. at some time after sphere B.
b. at the same time as sphere B.
c. at some time before sphere B.
d. There is not enough information to decide.
__ 6. If both spheres leave the edge of the table at the same instant, sphere A hits the floor at the spot marked X. Sphere B will hit the floor
a. at some point between the edge of the table and X.
b. at some point past X.
c. at the same distance from the table as X.
d. there is not enough information to decide.
Answer:
c. because A will land first becuase its heavier
and D.
Explanation:
Which of the following examples best represents an object with balanced forces acting upon it?
A - A boat accelerating through the water.
B - A book sitting at rest on a high shelf.
C- A wagon rolling down a steep hill.
D- A baseball thrown into the air.
Answer:the answer is “A book sitting on a high shelf” :)
Explanation:
Where are you atera11
Answer:
? who is atera11?
Explanation:
vector of magnitude 15 is added to a vector of magnitude 25. The magnitude of this sum
might be:
A. Zero
B.5
C.9
0 15
E.4
and how ?
Explanation:
Given that,
Magnitude of vector A, |A| = 15
Magnitude of vector B, |B| = 25
We need to find the magnitude of this sum.
The maximum sum of the resultant vector,
[tex]R_{max}=|A_1|+|A_2|\\\\=15+25\\\\=45[/tex]
The minimum sum of the resultant vector,
[tex]R_{min}=|A_1|-|A_2|\\\\=15-25\\\\=-10[/tex]
So, the magnitude of this sum either 45 or -10.
Secretariat is known as the horse with the fastest run in the Kentucky Derby. If Secretariat's record 1.25 mi run lasted 1 minute 59.2 seconds, what was his average speed in m/s
Answer:
v = 16.87 m/s
Explanation:
Given that,
Distance, d = 1.25 miles
d = 2011.68 m
Time, t = 1 minute 59.2 seconds
= 60 s + 59.2 s
= 119.2 s
We need to find the average speed of the horse. It is given by total distance covered divided by total time.
[tex]v=\dfrac{2011.68 \ m}{119.2\ s}\\\\=16.87\ m/s[/tex]
So, his average speed is 16.87 m/s.
if an atom was a scale, in which the nucleus is the size of an apple the electron.....
Answer:
the nucleus is the size of an apple, approximately 5 cm of radius e, the atom has a radius of R = 5 cm 104 = 50000 cm = 50 km
Explanation:
In the Rutherford experiments it was proved that the atomic nucleus has the volume 10-4 the volume of the atom.
If we make a scale design in which the nucleus is the size of an apple, approximately 5 cm of radius e, the atom has a radius of R = 5 cm 104 = 50000 cm = 50 km
This shows that almost the entire volume of the atom is empty.
What’s the answer to this
The motion of a nightingale's wingtips can be modeled as simple harmonic motion. In one study, the tips of a bird's wings were found to move up and down with an amplitude of 8.0 cm and a period of 0.80 s.
Part A: What is the wingtips' maximum speed?
Part B: What is the wingtips' maximum acceleration?
Answer:
PART A: Maximum speed = 0.314 m/s
PART B: Maximum acceleration = 1.23 m/s²
Explanation:
A simple Harmonic motion is a repetitive motion through an equilibrium point.
Amplitude = 8.0cm = 8/100 = 0.08m (highest displacement)
period (T) = 0.80s
A) maximum speed [tex](V_{max)[/tex]
[tex]V_{max} = 2\pi fA\\where:\\A = Amplitude = 0.08m\\f = frequency = \frac{1}{period(T)} = \frac{1}{0.8} = 1.25 Hz\\\therefore 2\pi fA = 2\pi \times 1.25 \times 0.08\\= 0.314\ m/s[/tex]
B) maximum acceleration [tex](a_{max})[/tex]
[tex]a_{max} = (2\pi f)^2A\\where:\\f = 1.25Hz\\A = 0.08m\\a_{max} = (2\pi \times 1.25)^2 \times 0.08\\= 1.23\ m/s^2[/tex]
A has a frequency of 300 Hz and a wavelength of 1.10 m. What is the velocity of the wave?
Hello!!
For calculate the Velocity of the wave let's applicate the formula:
[tex]\boxed{V=f*\lambda}[/tex]
[tex]\textbf{Being:}[/tex]
[tex]\sqrt{}[/tex] V = Velocity = ?
[tex]\sqrt{}[/tex] f = Frequency = 300 Hz
[tex]\sqrt{}[/tex] [tex]\lambda[/tex] = Wavelength = 1,1 m
⇒ [tex]\text{Then let's \textbf{replace it according} we information:}[/tex]
[tex]V = 300 \ Hz * 1,1 \ m[/tex]
⇒ [tex]\text{Let's resolve it: }[/tex]
[tex]V = 330 \ m / s[/tex]
[tex]\textbf{Result:}\\\text{The velocity is \textbf{330 meters per second}}[/tex]
Answer:
For calculate the Velocity of the wave let's applicate the formula:
V = Velocity = ?
f = Frequency = 300 Hz
= Wavelength = 1,1 m
⇒
⇒
Explanation:
b) A satellite with mass m orbits the Earth at a radius r. A second satellite also with mass m orbits the
Earth at twice the radius.
How does the force of Earth's gravity acting on the two satellites
compare? PLEASE HURRY
Answer:
So, given the eqn Fg=G(m1+m2/r^2) where G is the gravitational constant, m is the mass of the satellite and m2 is the mass of the earth and r is the distance from earth to the satellite, the force of earths gravity should be quartered.
Cause (2r)^2 gets turned into (4r^2) where 4r^2 is compared to r^2
Explanation:
12) Consider two identical bricks, each of dimensions 20.0 cm x 10.0 cm x 6.0 cm. One is stacked
on the other, and the combination is then placed so that they project out over the edge of a
table. What is the maximum distance that the end of the top brick can extend beyond the table
edge without toppling?
A) 7.5 cm
B) 10 cm
C) 12.5 cm
D) 15 cm
Answer:
7.5
Explanation:
Using a light microscope, a student identified the following characteristics of four organisms found in a sample of pond water. Based on the observations of the student,
which organisms most likely belong to the taxonomic group for bacteria?
Pond-Water Organisms
Organism 1 Single-celled, nucleus, large vacuole
Organism 2 Single-celled, no nucleus, cell wall
Organism 3 Single-celled, no nucleus
Organism 4 Single-celled, nucleus
Organism 1 and 4
Organism 1 and 2
Organism 3 and 4
Organism 2 and 3
Answer:
Organisms 2 and 3
Explanation:
calculate the force necessary to keep a mass of 2 kg moving on a circular path of radius 0.2 m with a period of 0.5 second. what is the direction of force
Answer:
jjjjj
Explanation:
dkcdzjc
which model best represents a pattern
Answer:
A
Explanation:
The voltage between two points in a circuit is 3.6 V. If the resistance between
the points is 75 , what is the current, according to Ohm's law?
A. 76.6 A
B. 0.048 A
C. 20.8 A
D. 270 A
Correct answer is B!
Considering the Ohm's law, the correct answer is option B. the current is 0.048 A.
Definition of currentThe flow of electricity through an object, such as a wire, is known as current (I). Its unit of measure is amps (A). So the current is a measure of the speed at which the charge passes a given reference point in a specified direction.
Definition of voltageThe driving force (electrical pressure) behind the flow of a current is known as voltage and is measured in volts (V) (voltage can also be referred to as the potential difference or electromotive force). That is, voltage is a measure of the work required to move a charge from one point to another.
Definition of resistanceResistance (R) is the difficulty that a circuit opposes to the flow of a current and it is measured in ohms (Ω).
Ohm's lawOhm's law establishes the relationship between current, voltage, and resistance in an electrical circuit.
This law establishes that the intensity of the current that passes through a circuit is directly proportional to the voltage of the same and inversely proportional to the resistance that it presents.
Mathematically, Ohm's law is expressed as:
[tex]I=\frac{V}{R}[/tex]
Where I is the current measured in amps (A), V the voltage measured in volts (V); and R the resistance that is measured in ohms (Ω).
This caseIn this case, you know that the voltage between two points in a circuit is 3.6 V and the resistance between the points is 75 Ω.
Replacing in the Ohm's Law:
[tex]I=\frac{3.6 volts}{75 ohm}[/tex]
Solving:
I= 0.048 amps
Finally, the correct answer is option B. the current is 0.048 A.
Learn more about Ohm's law:
https://brainly.com/question/13076023
https://brainly.com/question/17286882?referrer=searchResults
https://brainly.com/question/2275770
A car moving initially at 20 m/s accelerates up to 60 m/s during the
course of 5 seconds. The average acceleration of the car is m/s2
Why did scientist struggle for thousands of years to accurately describe the solar system
Answer: C- The planets appeared to move backward in the sky occasionally.
What best describes the speed of light waves in solids, liquids, and gases?
The speed is fastest in solids.
The speed is fastest in liquids.
The speed is fastest in gases.
The speed is the same in all matter.
Answer: It’s fastest in gases. Letter C !
Explanation:
Answer:
its c
Explanation:
A thin, uniform stick of mass M and length L is at rest on a flat, frictionless surface to which one end of it is pinned. A small mass m traveling at speed v collides with and attaches to the stick at a distance 2L/3 away from the end through which it is pinned to the surface. (a) Find an expression for the moment of inertia of the stick mass object after the collision. (b) Find an expression for the final angular speed of the combined object
Answer:
a) I = ([tex]\frac{M}{3}[/tex] + [tex]\frac{4m}{9}[/tex]) L² , b) w = (\frac{27 M}{18 m} + 2)⁻¹ Lv₀
Explanation:
a) The moment of inertia is a scalar that represents the inertia in circular motion, therefore it is an additive quantity.
The moment of inertia of a rod held at one end is
I₁ = 1/3 M L²
The moment of inertia of the mass at y = L
I₂ = m y²
The total inertia method
I = I₁ + I₂
I = \frac{1}{3} M L² + m (\frac{2}{3} L)²
I = ([tex]\frac{M}{3}[/tex] +[tex]\frac{4m}{9}[/tex] ) L²
b) The conservation of angular momentum, where the system is formed by the masses and the bar, in such a way that all the forces during the collision are internal.
Initial instant. Before the crash
L₀ = I₂ w₀
angular and linear velocity are related
w₀ = y v₀
w₀ = [tex]\frac{2}{3}[/tex]L v₀
L₀ = I₂ y v₀
Final moment. After the crash
[tex]L_{f}[/tex] = I w
how angular momentum is conserved
L₀ = L_{f}
I₂ y v₀ = I w
substitute
m ([tex]\frac{2L}{3}[/tex])² (\frac{2L}{3} v₀ = ([tex]\frac{M}{3}[/tex] +[tex]\frac{4m}{9}[/tex] ) L² w
[tex]\frac{6}{27}[/tex] m L³ v₀ = ([tex]\frac{M}{3}[/tex] +[tex]\frac{4m}{9}[/tex] ) L² w
[tex]\frac{6}{27}[/tex] m L v₀ = ([tex]\frac{M}{3}[/tex] +[tex]\frac{4m}{9}[/tex] ) w
L v₀ = [tex](\frac{27 M}{18 m} + 2)[/tex] w
w = (\frac{27 M}{18 m} + 2)⁻¹ Lv₀
Can hurricanes produce tornadoes
Answer:
No
Explanation:
Answer:
No
Explanation:
Tornadoes are usally produced in the Midwest regions. Hurricanes are made with water, not clouds. So, no, hurricanes cannot produce tornadoes.
A car is moving at 25.5 m/s when it accelerates at 1.94 m/s^2 for 2.3 s. What is the car's final speed? (Keep in mind direction and round to 2 decimals)
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s
A rightward force of 4.0 N is exerted upon an object for a distance of 3.0 meters.
What is the work done on the object?
Answer:
W = 12 J
Explanation:
Given that,
Force, F = 4 N
The object moves in rightward direction for a distance of 3 m.
Work done on the object is given by :
[tex]W=F\times d\\\\=4\ N\times 3\ m\\\\=12\ J[/tex]
So, the work done on the object is 12 J.
The index of refraction of quartz is anisotropic. Suppose that visible light is passing from one grain to another of different crystallographic orientation and at normal incidence to the grain boundary. Calculate the reflectivity at the boundary if the indices of refraction for the two grains are 1.545 and 1.555 in the direction of light propagation. Enter your answer in accordance to the question statement
Answer:
1.04*10⁻⁵
Explanation:
light wave do showcase some behaviors whenever there is encounters with the end of the medium, some of the behaviors are - reflection, refraction, as well as diffraction. When visible light wave strikes a boundary that exist two different media, a portion of the energy will be transmitted into the new medium and some reflected.
Reflection of a light wave can be regarded as bouncing off of light wave from boundary. refraction on other hand is bending of the path of a light wave.
We were to calculate the reflectivity at the boundary,
reflectivity at the boundary can be calculated using the expression below
Reflectivity= (n₂ - n₁)² /(n₂ + n₁ ) ²
where
n₁= Indices of refraction at first grain= 1.545
n₂= Indices of refraction at second grain=
1.555
(1.555 - 1.545)² / (1.555 - 1.545)²
=(0.01)²/ (3.1)²
= 0.0001/ 9.61
= 1.04*10⁻⁵
Hence, the reflectivity at the boundary if the indices of refraction for the two grains are 1.545 and 1.555 in the direction of light propagation is 1.04*10⁻⁵
how would you write 4.3756 in standard decimal form
A particle starts from rest and moves with a constant acceleration. It travels the first 16 m in 4 s.
The time (in second) at which the velocity of the particle becomes. 8. m/s is:
a) 3
b) 4
c) 5
d) 6
e) 7
Answer:
B
Explanation:
At a sports event, the car starts from rest. in 5.0 s its acceleration is 5.0 m/s2.
Calculate the distance travelled by car.
Answer:
62.5m
Explanation:
Given parameters:
Initial velocity = 0m/s
Time = 5s
Acceleration = 5m/s²
Unknown:
Distance traveled = ?
Solution:
To solve this problem, we use the motion equation given below:
S = ut + [tex]\frac{1}{2}[/tex] at²
S is the distance traveled
u is the initial velocity
a is the acceleration
t is the time taken
Now, insert the parameters and solve;
S =( 0 x 5) +( [tex]\frac{1}{2}[/tex] x 5 x 5²) = 62.5m