Answer:
it shows that the properties of the elements stay the same after the reaction
it shows that the properties of the elements stay the same after the reaction
it shows that all compounds remain bonded after the reaction
it shows that all compounds remain bonded after the reaction
it shows that only physical changes follow the Law of Conservation of Mass
it shows that only physical changes follow the Law of Conservation of Mass
it shows that no atoms have been gained or lost during the reaction
it shows that no atoms have been gained or lost during the reaction
Why is the sky blue and why do we get a sunset
Answer:
Small particles of dust and pollution in the air can contribute to (and sometimes even enhance) these colors, but the primary cause of a blue sky and orange/red sunsets or sunrises is scattering by the gas molecules that make up our atmosphere. Large particles of pollution or dust scatter light in a way that changes much less for different colors.
Explanation:
3. A circular section of copper cable has a resistance of 0.50. What will be the resistance of a
copper cable of the same length but of twice its diameter?
What is the average SPEED/VELOCITY of a car that traveled 1 complete lap around an oval track that’s 5000m long in 1000s
Answer:
5 m/s
Explanation:
5000/1000=5 m/s
:))
NO LINKS
According to "Patterns of Change," select the ways that rocks are changed naturally over time. Choose three answers. O A. water O B. location O C. animals D. wind O E. people O F temperature
Answer: A , D & F
Explanation:
A pendulum is made from a long rod of mass M and length L with a solid sphere (ball) of mass m and radius R attached to one end. As measured from the top of the pendulum (the end of the rod without the sphere), how far down the rod is the center of mass of the pendulum located
Answer:
Explanation:
If we assume the rod and sphere are of uniform construction so that their individual centers of mass are at their geometric centers, and that the rod end is attached to the surface of the sphere.
Balance moments about the rod free end of the assembly with its parts
(M + m)Cx = M(L/2) + m(L + R)
Cx = (M(L/2) + m(L + R)) / (M + m)
What is the intensity of the electromagnetic light waves coming from the Sun just outside of the atmosphere of Venus, Earth and Mars
The sun emits electromagnetic waves with a power of
4.0 ∗ 10 (26) W.
Which of the following can cause an object to accelerate?
Select one:
a. Force
b. Inertia
c. Mass
d. Kinetic Energy
I think force can accelerate
Explanation:
i think force of an object
How do light travels
Answer:
Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; (3) after being reflected from a mirror.
Explanation:
14 The radius of gyration of a body about an axis &ta
distance 6 cm from its centre of mass is 10 cm.
Then, its radius of gyration about a parallel axis
through its centre of mass will be
(a) 80 cm (b) 8 cm (c) 0.8 cm (d) 0.08 cm
Correct option is B 8 cm.
Let radius of gyration for the axis not passing through center of mass be r and that for the axis passing through the center of mass be k and the distance between the two parallel axes be a.
Parallel axes theorem gives:
[tex] {mr}^{2} = m( {k}^{2} + {a}^{2} ) \\ ⇒ {r}^{2} = {k}^{2} + a {}^{2} [/tex][tex]⇒k = \sqrt{ {10}^{2} - {6}^{2} } = 8cm.[/tex]Thus, option B is the correct answer.
Wrte down the effect of humidity and temperature in the speed of sound....
Explanation:
the speed of sound is affected by temperature and humidity
PLEASE HELP ON THIS QUESTION
[tex]r = 1.29×10^8\:\text{m}[/tex]
Explanation:
According to Newton's law of universal gravitation, the gravitational force between Uranus and Miranda is
[tex]F_G = G\dfrac{M_UM_M}{r^2}[/tex]
where [tex]M_U[/tex] is the mass of planet Uranus, [tex]M_M[/tex] is the mass of its satellite Miranda, r is the distance between their centers and G is the universal gravitational constant. Moving the variable r to the left side, we get
[tex]r^2 = G\dfrac{M_UM_M}{F_G}[/tex]
Taking the square root of the equation above, we get
[tex]r = \sqrt{G\dfrac{M_UM_M}{F_G}}[/tex]
Plugging in the values, we get
[tex]r = \sqrt{(6.67×10^{-11}\:\text{N-m}^2{\text{/kg}}^2)\dfrac{(8.68×10^{25}\:\text{kg})(6.59×10^{19}\:\text{kg})}{2.28×10^{19}\:\text{N}}}[/tex]
[tex]\:\:\:\:\:=1.29×10^8\:\text{m}[/tex]
Can someone PLEASE help me??
3) A force of magnitude Fx acting in the x-direction on a 2.00 kg particle varies in time as shown
in FIGURE 2. Find
a) The impulse of the force
b) The final velocity of the particle if it is initially at rest
c) The final velocity of the particle if it is initially moving along the x-axis with velocity
of -2.00 ms -1
Answer:
a) Impuise of force =F∗?(t) = area of F-T graph area= impulse =triangle + rectangle + triangle = 0.5*4*2 + 4*1 + 0.5*4*2 = 12 N-s (b) impulse = change in momentum \(= mExplanation:
Which statement describes electromagnetic waves with wavelengths grater than 700 nanometers
Answer:
They take the form of heat, I think thats it but I cant see if you put down any answers
Explanation:
Answer:a
Explanation:
they form hear
If an electron moves in a direction perpendicular to the same magnetic field with this same linear speed,
what is the radius of its circular orbit?
Answer:
An effect begins to alter movement, and the direction of moves in the circular path is known as centripetal force. Its measurable unit is Newton or Kilogram meter per square of the second. The product of mass and square of velocity divided by the radius of path travel by the body provide s the term centripetal force.
Explanation:
Answer:
An effect begins to alter movement, and the direction of moves in the circular path is known as centripetal force. Its measurable unit is Newton or Kilogram meter per square of the second. The product of mass and square of velocity divided by the radius of path travel by the body provide s the term centripetal force.
Explanation:
When a 25000-kgkg fighter airplane lands on the deck of the aircraft carrier, the carrier sinks 0.30 cmcm deeper into the water.
The control center of human body is * 1/1 heart
brain
liver
We have ________ sense organs * 1/1
6
4
5
Which energy we get by burning of fuels * 1/1
Solar
Heat
Light
Sources of energy that can be used again and again will never run out * 1/1 Non renewable energy Renewable energy Running water What is called structure that build on rivers to get electricity * 1/1 Dam Check dam Tunnel Which nutrients protect us from diseases * 1/1 Carbohydrate Vitamin and Mineral Protein When is the best time of the day to water your lawn * 1/1 Early morning and late evening Afternoon Night Which of these ways to wash the car saves the most water? * 1/1 Wash it in the driveway with the garden hose Drive it into the lake Take it through a car wash that recycles water Why do we keep food and vegetables in refrigerator? * 1/1
A 25-kg box of books is dropped on the floor from a height of 1.1 m and comes to rest. What impulse did the floor exert on the box
The impulse the floor exert on the box is 116 kgm/s.
The given parameters;
mass of the books, m = 25 kgheight of the books, h = 1.1 mThe final velocity of the box when it dropped to the floor is calculated as follows;
[tex]\frac{1}{2} mv^2 = mgh\\\\v^2 = 2gh\\\\v = \sqrt{2gh} \\\\v = \sqrt{2\times 9.8 \times 1.1} \\\\v = 4.64 \ m/s[/tex]
The impulse the floor exert on the box is calculated as follows;
the impulse the floor exert on the box is equal to change in momentum of the book
[tex]J = \Delta P\\\\J = \Delta Mv\\\\J = M(v_f - v_0)\\\\J = 25(4.64 - 0)\\\\J = 116 \ kgm/s[/tex]
Learn more about impulse here:https://brainly.com/question/23927723
calculate the mass of a block of ice having volume 5m³. (density of ice≈920 kg/m³)
Answer:
4600kg
Explanation:
Density=mass÷volume
920=m/5
m=920×5=4600kg
Several common barometers are built using a variety of fluids. For which fluid will the column of fluid in the barometer be the highest
Answer:
the one in which the fluid has the lowest density
What conclusion can you draw from the information shown in this figure?
The speed of sound varies with the material in which the waves travel.
Sound waves can move more quickly through liquids than through solids.
Sound intensity is greater in water than in air.
The frequency of sound increases with wave speed.
Answer:
The speed of sound varies with the material in which the waves travel.
Explanation:
knowledge and research
It can be concluded as per the given table that the speed of sound varies with the material in which the waves travel. The correct option is A.
What is speed?Speed is the pace at which an object's position changes in any direction. The distance travelled in relation to the time it took to travel that distance is how speed is defined. Since speed simply has a direction and no magnitude, it is a scalar quantity.
It has a dimension of time-distance. As a result, the fundamental unit of time and the basic unit of distance are combined to form the SI unit of speed. Thus, the metre per second (m/s) is the SI unit of speed.
According to the given table, it can be inferred that the material in which the waves travel affects the speed of sound.
Thus, the correct option is A.
For more details regarding speed, visit:
https://brainly.com/question/28224010
#SPJ2
When is the estimated due date (post conception) for parturition?
Answer: 38 weeks (266 days) from the date of conception.
Explanation: www.momjunction.com/pregnancy-due-date-calculator/
A 64 kg student is standing atop a spring in an
elevator that is accelerating upward at 3.0 m/s2
The spring constant is 3000 N/m.
A) by how much is the spring compressed?
Answer:
192
Explanation:
n which case will a beat frequency most likely occur?(1 point) two different instruments playing notes at the same frequency two different instruments playing notes at the same frequency two of the same instrument playing notes at the same frequency two of the same instrument playing notes at the same frequency two of the same instrument playing notes at slightly different frequencies two of the same instrument playing notes at slightly different frequencies two different instruments playing notes at very different frequencies
Answer:
two of the same instrument playing notes at slightly different frequencies
Explanation:
The correct answer is two of the same instrument playing notes at slightly different frequencies.
What is the frequency?Frequency is the number of occurrences of a periodic event per unit of time. In the context of sound waves, frequency refers to the number of complete cycles of a sound wave that occur in one second and is measured in units of Hertz (Hz).
In this question,
A beat frequency occurs when two sound waves with slightly different frequencies interfere with each other, resulting in a periodic variation in the amplitude of the resulting wave. The beat frequency is equal to the difference in frequency between the two original sound waves.
When two of the same instrument play notes at slightly different frequencies, the sound waves produced by each instrument will have slightly different frequencies due to differences in tuning or other factors. When the two sound waves interfere with each other, they will produce a beat frequency equal to the difference between their frequencies. This beat frequency will be audible as a periodic variation in the loudness or intensity of the sound.
In the other statements, There will not be any beat frequency because the sound waves being produced have either the same frequency or very different frequencies, which do not interfere with each other in a way that produces beats.
Therefore, The statement two of the same instrument playing notes at slightly different frequencies is correct.
To learn more about the Doppler effect click:
https://brainly.com/question/3795295
#SPJ3
How do I resolve moments about the point P?
Answer:
By applying the definition of torques ( [tex]\vec \tau = \vec r \times \vec F[/tex] ) and them remembering a few tricks.
Namely: if you wrap your RIGHT hand fingers around something and stick your thumb out, the direction your finger wraps gives you the verse of rotation and the thumb the orientation of the torque. Bottom force (4N) will give a counterclockwise rotation, torque is pointing up; top force (3N) will give a clockwise rotation and its torque its pointing down (read up and down as if the sheet the image is printed on is on your table).
In terms of magnitude the trick is easy: You want to multiply the intensity of the force (3N and 4N) by the distance between the point and the line the force it is applied to (that is, you don't care about the length of r itself, but the distance at a right angle, which is 0.9 and 0.8m respectively.
At this point, assuming "upwards" (relative to the plane of the sheet that is) torques positive, the 3N force gives you a torque of [tex]- 3N \times 0.9m = - 2.7N\cdot m[/tex] and the 4N force provides [tex]+4N\times 0.8 m = +3.2 N\cdot m[/tex]
:”)
1- a car speeds up to get onto the freeway. it goes from 21 m/s to 39 m/s in 4.1 seconds. How far did it travel??
2- a boulder fell off a cliff and fell for 4.1 seconds. How tall was the cliff?
Answer:
Explanation:
1) average velocity is
v = (21 + 39)/2 = 30m m/s
d = vt 30(4.1) = 123 = 120 m
2) d = ½gt²
d = ½(9.8)(4.1²)
d = 82.369 = 82 m
when rounding to the two significant digits of the question numerals.
A man walks 30m to the west, then 5m to the East in 45 seconds. What is the total distance walked?
Answer:
In this problem basically we will use directions to find displacement and distance .
(Keep in mind that displacement is vector while distance is scalar quantity)
And then we will use displacement and distance to find average velocity and average speed.
Explanation:
For the ballistic missile aimed to achieve the maximum range of 9500 km, what is the maximum altitude reached in the trajectory
Explanation:
The range R of a projectile is given the equation
[tex]R = \dfrac{v_0^2}{g}\sin{2\theta}[/tex]
The maximum range is achieved when [tex]\theta = 45°[/tex] so our equation reduces to
[tex]R_{max} = \dfrac{v_0^2}{g}[/tex]
We can solve for the initial velocity [tex]v_0[/tex] as follows:
[tex]v_0^2 = gR_{max} \Rightarrow v_0 = \sqrt{gR_{max}}[/tex]
or
[tex]v_0 = \sqrt{(9.8\:\text{m/s}^2)(9.5×10^6\:\text{m})}[/tex]
[tex]\:\:\:\:\:\:\:=9.6×10^3\:\text{m/s}[/tex]
To find the maximum altitude H reached by the missile, we can use the equation
[tex]v_y^2 = v_{0y}^2 - 2gy = (v_0\sin{45°})^2 - 2gy[/tex]
At its maximum height H, [tex]v_y = 0[/tex] so we can write
[tex]0 = (v_0\sin{45°})^2 - 2gH[/tex]
or
[tex]H = \dfrac{(v_0\sin{45°})^2}{2g}[/tex]
[tex]\:\:\:\:\:\:= \dfrac{[(9.6×10^3\:\text{m/s})\sin{45°}]^2}{2(9.8\:\text{m/s}^2)}[/tex]
[tex]\:\:\:\:\:\:= 2.4×10^6\:\text{m}[/tex]
A baseball player notices the ball when it is 3.4 m above the
ground, traveling at 4.4 m/s. He wants to make the catch when
the ball is 1.5 m above the ground, how long does it take to reach
his glove?
Find the distance the ball travels:
3.4 meters - 1.5 meters = 1.9 meters
Now divide the distance the ball travels by the speed:
1.9 meters / 4.4 m/s = 0.43 seconds
Answer:
Explanation:
s = s₀ + v₀t + ½at²
There are an infinite number of solutions to this question as posed because we are not told the direction of the initial velocity.
Assuming ground is level and origin and UP the positive direction
The shortest amount of time possible is when the initial velocity is straight down
1.5 = 3.4 - 4.4t + ½(-9.8)t²
0 = -4.9t² - 4.4t + 1.9
t = (4.4 ±√(4.4² - 4(-4.9)(1.9))) / (2(-4.9))
positive answer is
t = 0.32 s
The longest amount of time possible is when the initial velocity is straight up.
1.5 = 3.4 + 4.4t + ½(-9.8)t²
0 = -4.9t² + 4.4t + 1.9
t = (-4.4 ±√(4.4² - 4(-4.9)(1.9))) / (2(-4.9))
positive answer
t = 1.22 s
If the initial velocity is horizontal, meaning no vertical velocity
1.5 = 3.4 + 0t + ½(-9.8)t²
-4.9t² = -1.9
t² = 0.38775...
t = 0.62 s
Any angle between UP and Down will have a different initial vertical velocity and result in a different time to catch height.
It appears from the comments on the other answer, that I have shown you how to arrive at three of the four possible solutions. The initial direction is very important.
The oscillation of the 2.0-kg mass on a spring is described by x = 3.0 cos (4.0 t) where x is in centimeters and t is in seconds. What is the force constant k of the spring?
The force constant k of the spring, if The oscillation of the 2 kg mass of spring is described by x = 3.0 cos (4.0 t) is 32 N / m.
What is force?Force is the influence of either pull or pushes in the body. Basically, gravitation forces, nuclear forces, and friction forces are the types of forces. For e.g. when the wall is hit by a hand then a force is exerted by the hand on the wall as well as the wall also exerts a force on the hand. There are different laws given to Newton to understand force.
Newton is a unit of force used by physicists that is part of the International System (SI). The force required to move a body weighing one kilogram one meter per second is known as a newton.
Given:
The mass of the block, m = 2 kg,
The oscillation of spring, x = 3 cos 4t,
Calculate the omega by comparing the standard equation given below,
[tex]x = A cos \omega t[/tex]
ω = 4
Calculate the spring constant by the formula given below,
[tex]\omega = \sqrt{\frac{k}{m} }[/tex]
4² = k / 2
k = 32 N / m
Therefore, the force constant k of the spring, if The oscillation of the 2 kg mass of spring is described by x = 3.0 cos (4.0 t) is 32 N / m.
To know more about Force:
https://brainly.com/question/13191643
#SPJ2