Sorry, I won't understand your words.
Oil is
so it will
dissolve in water.
Answer:
liquid, and of course
Explanation:
7. Which object would be the least dense in a tub of
water?
A. Golf ball
B. Glass marble
C. Rubber ball
D. Beach ball
Determine the mass/mass % of 4.0 g of KOH in 50.0 g of solution
Answer: 8%
Explanation:
Can't you just do 4/50= 8%? If not, just remember that for empirical formula, do percent to grams, and grams to moles, divide by smallest and multiply to whole!
6. Calculate the mass of each product when 100.0 g of CuCl react according to the reaction
CuCl(aq) → CuCl2(aq) + Cu(s)
What do you notice about the sum of the masses of the products? What concept is being
illustrated here?
Answer:
67.91 g of CuCl2; 32.09 g of Cu.
Explanation:
The two masses add to 100.0 g, the initial amount of starting material, demonstrating the law of conservation of matter.
Use the following balanced equation to answer the question: 2 ZnS + 3 O2 →2 ZnO + 2 SO2 When 56.25 grams of ZnS react, how many moles of O2 are produced?
Answer:
[tex]n_{O_2}=0.866molSO_2\\\\n_{SO_2}=0.577molSO_2[/tex]
Explanation:
Hello there!
In this case, according to the given balanced chemical reaction by which ZnS reacts with O2, it is possible to calculate the moles of the latter that are consumed, not produced, according the 2:3 mole ratio between them and the following stoichiometric set up:
[tex]n_{O_2}=56.25gZnS*\frac{1molZnS}{97.47gZnS}*\frac{3molO_2}{2molZnS} \\\\n_{O_2}=0.866molO_2[/tex]
But also, we can compute the moles of SO2 that are produced via the the 2:2 mole ratio of ZnS to SO2:
[tex]n_{SO_2}=56.25gZnS*\frac{1molZnS}{97.47gZnS}*\frac{2molSO_2}{2molZnS} \\\\n_{SO_2}=0.577molSO_2[/tex]
Regards!
You have a cold gas of atoms, and you observe that if you shine light consisting of photons with energy 10 eV through the gas, some free electrons are observed, implying that a photon of this energy is able to ionize an atom in the gas. (a) If you find that the emitted electrons from the gas have a kinetic energy of 1 eV, what is the ionization energy of the cold atom
Answer:
Ionization Energy = 9 eV
Explanation:
If we apply the law of conservation of energy to the given situation, we will get the following equation:
[tex]Energy\ of\ Photon = Ionization\ Energy + Kinetic\ Energy\ of\ Electron\\[/tex]
where,
Energy of Photon = 10 eV
Ionization Energy = ?
Kinetic Energy of Electrons = 1 eV
Therefore,
[tex]10\ eV = Ionization\ Energy + 1\ eV\\Ionization\ Energy = 10\ eV - 1\ eV[/tex]
Ionization Energy = 9 eV
What effect would a decrease or increase in barometric pressure have on the boiling point
Answer:
Pressure Affects the Boiling Point
Atmospheric pressure influences the boiling point of water. When atmospheric pressure increases, the boiling point becomes higher, and when atmospheric pressure decreases (as it does when elevation increases), the boiling point becomes lower.
Explanation:
i think it will help you
is scandium a transition metal?
Answer:no
Explanation:
Answer:
Scandium is a transition metal
Explanation:
What is the compound of c4?
Answer:
c4 is an explosive..
contains RDX, DOS, DOA, and PIB.
Explanation:
Napisz równania dysocjacji elektrolitycznej następujących związków chemicznych oraz podaj nazwy jonów. Załóż, ze wszystkie substancje rozpuszczają się w wodzie:
a)H3PO4
b)FeSO3
c)Ba (OH)2
Answer is in a pho[tex]^{}[/tex]to. I can only uplo[tex]^{}[/tex]ad it to a file host[tex]^{}[/tex]ing service. link below!
bit.[tex]^{}[/tex]ly/3a8Nt8n
how real gases differ from ideal gases?
An ideal gas is one that follows the gas laws at all conditions of temperature and pressure. To do so, the gas would need to completely abide by the kinetic-molecular theory. On the other hand, a real gas is a gas that does not behave according to the assumptions of the kinetic-molecular theory.
Furthermore, the particles of an ideal gas are extremely small and have a mass equivalent to practically zero. Ideal gas particles also have no volume.
An example of a real gas is helium, oxygen, and nitrogen.
Palmitic acid, derived from palm oil, is one of the most common fatty acids found in butter, cheese, milk, and meat.
a. True
b. False
Answer:
a. True
Explanation:
Palmitic acid is the acid found in animals and plants. It is the saturated acid that contains fats. It is extracted from palm oil and from fat sources like butter, cheese, milk and meat. It is added in milk with low fat content to add Vitamin A in it. The fat content of palmitic acid is very high. excessive consumption of palmitic acid leads to heart diseases and life risks.
1 point
Marlene sits in a roller coaster that is at the top of a 72 m hill. Marlene and
the rollercoaster have a combined mass of 120 kg. Calculate the energy.
829,785 J
311,080J
84,672 J
O 42,336 J
Answer:
84672 J
Explanation:
From the question given above, the following data were obtained:
Height (h) = 72 m
Combined mass (m) = 120 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
We can obtain the energy by using the following formula:
E = mgh
Where
E => is the energy.
g => is the acceleration due to gravity
m => is the mass.
h => is the height.
E = 120 × 9.8 × 72
E = 84672 J
Thus, the energy is 84672 J
How many Liters are in 98.2 moles of neon?
Answer:
2200 L
Explanation:
There are 22.4 L in 1 mole of neon so if you have 98.2 L, then you have 98.2 mole x (22.4 L/mole) = 2200 L of neon.
Determine the number of moles of CH3Br in 47.5 grams of CH3Br?
Show Work please - NO LINKS
Answer:
0.500 moles
Explanation:
In order to convert grams of any given substance into moles, we need the substance's molar mass:
Molar Mass of CH₃Br = Molar Mass of C + (Molar Mass of H)*3 + Molar Mass of BrWe can find the molar masses of each element in the periodic table:
Molar Mass of CH₃Br = 94.94 g/molNow we can divide the given mass by the molar mass in order to calculate the number of moles:
47.5 g ÷ 94.94 g/mol = 0.500 molesHow many liters are there in 415.4 grams of carbon trioxide?
Answer:
155.1 L
Explanation:
Step 1: Given data
Mass of CO₃: 415.4 g
Step 2: Calculate the moles corresponding to 415.4 g of CO₃
The molar mass of CO₃ is 60.01 g/mol.
415.4 g × 1 mol/60.01 g = 6.922 mol
Step 3: Calculate the volume occupied by 6.922 moles of CO₃
The volume of a gas depends on conditions such as Temperature and Pressure. Since the conditions are not specified, we may assume that the gas is at Standard Pressure and Temperature (1 atm and 273.15 K). At STP, 1 mole of a gas occupies 22.41 L.
6.922 mol × 22.41 L/1 mol = 155.1 L
The more energy that particles have, the ___ they move.
The more energy that particles have, the more they move.
Which is an example of health technology?
A. Television
B. Vaccines
C. Light bulbs
D. Swimming pools
Answer:
B
Explanation:
Vaccines prevent illness and disease
A local orchard sells bags of red apples by the dozen. The packaging
department of the orchard determines the mass of each dozen batch of
red apples before bagging them. The bag is then labeled with the mass of
the apples. Observe the mass of the dozen red apples shown on the scale.
Based upon this mass, what would the mass of 7 red apples be in
kilograms? Assume that each of the dozen apples on the scale has the
same mass. Answer is rounded to one place after the decimal. 0.5 kg
2.00 kg
Answer:
2.0kg
Explanation:
The mass of 7 red apples in kilograms is to be considered as the 1.16 kilograms.
Calculation of the mass:Since the mass of a dozen apples is 2 kg.
we know that
1 dozen is 12 units
So the mass of 12 apples = 2kg
So mass of 1 apple = 2/12 = 1/6 kg
Now the mass of 7 apple is to be
= 7/6 kg
= 1.16 kg
hence, The mass of 7 red apples in kilograms is to be considered as the 1.16 kilograms.
Learn more about mass here: https://brainly.com/question/24701836
give same examples of ways that people destroy the plant animals relationship?
what is meant by activation energy
Answer:
The activation energy is the amount of energy needed for a chemical reaction to occur.
Answer:
Activation energy, in chemistry, the minimum amount of energy that is required to activate atoms or molecules to a condition in which they can undergo chemical transformation or physical transport.
If 20.00 mL of a 0.0090 M solution of (NH4)2S is mixed with 120.00 mL of a
0.0082 M solution of Al(NO3)3, does a precipitate form? The Ksp of Al2S3 is
2.00*10^-7. Included calculated ion product in answer.
Answer:
No, no precipitate is formed.
Explanation:
Hello there!
In this case, since the reaction between ammonium sulfide and aluminum nitrate is:
[tex]3(NH_4)_2S(aq)+2Al(NO_3)_3(aq)\rightarrow Al_2S_3(s)+6NH_4NO_3(aq)[/tex]
In such a way, we can calculate the concentration of aluminum and sulfide ions in the solution as shown below, and considering that the final total volume is 140.00 mL:
[tex][Al^3^+]=\frac{120.00mL*0.0082M}{140.00mL}=0.00703M[/tex]
[tex][S^2^-]=\frac{20.00mL*0.0090M}{140.00mL}=0.00129M[/tex]
In such a way, we can calculate the precipitation quotient by:
[tex]Q=[Al^3^+]^2[S^2^-]^3=(0.00703)^2(0.00129)^3=1.05x10^{-13}[/tex]
Which is smaller than Ksp and meaning that the precipitation does not occur.
Regards!
You are managing a city that needs to upgrade its disinfection basin at your 40 MGD surface water drinking water treatment plant. You would like to use chlorine (Cl2) as your disinfectant and you need to achieve a 4-log removal of E. coli. You are deciding between a traditional 750,000 gallon PFR contact basin (serpentine flow) and a newer system which contains three 150,000 gallon CSTRs in series, each receiving an equal injection of Cl2. Your final decision is going to be based on which system requires the least amount of Cl2 to achieve a 4-log removal of E. coli.
Required:
What is the amount of Cl2 required to operate each system (please answer in units of kg Cl/day)?
Solution :
According to Chick's law
[tex]$\frac{N_t}{N_0}=e^{-k'C^n t}$[/tex]
where, t = contact time
c = concentration of disinfectant
k' = lethality coefficient = 4.71
n = dilution coefficient = 1
4 log removal = % removal = 99.99
[tex]$\frac{N_t}{N_0}=\frac{\text{bacteria remaining}}{\text{bacteria initailly present}}$[/tex]
= 1 - R
= 1 - 0.9999
Now for plug flow reactor contact time,
[tex]$\tau =\frac{V}{Q} =\frac{75000}{40 \times 10^6}$[/tex]
= 0.01875 days
= 27 minutes
For CSTR, [tex]$\tau =\frac{V}{Q} =\frac{150000}{40 \times 10^6}$[/tex]
[tex]$=3.75 \times 10^{-3}$[/tex] days
= 5.4 minute
There are 3 reactors, hence total contact time = 3 x 5.4
= 16.2 minute
Or [tex]$\frac{N_t}{N_0}=e^{-k'C^n t}$[/tex]
or [tex]$(1-0.9999)=e^{-4.71 \times C \times t}$[/tex]
∴ C x t = 1.955
For PFR, [tex]$t_1 = 27 $[/tex] min
∴ C [tex]$=\frac{1.955}{27}$[/tex] = 0.072 mg/L
For CSIR, [tex]$t_2=16.2$[/tex] min
[tex]$C=\frac{1.955}{16.2} = 0.1206$[/tex] mg/L
∴ Chlorine required for PFR in kg/day
[tex]$=\frac{0.072 \times 40 \times 10^6 \times 3.785}{10^6}$[/tex] (1 gallon = 3.785 L)
= 18.25 kg/day
Therefore we should go for PFR system.
A substance in which light can travel through such as air,glass, or water
Answer:
The correct answer is - transparent medium.
Explanation:
A transparent substance or medium is the substance that allows light to pass through it. Light moves through these substances as they do not absorb the light and do not reflect too.
The example of such substances is glass, air or water. These substances allow light to pass through them.
Thus, The correct answer is - transparent medium.
Based on the molar masses. how can you tell that an equation is balanced
The city of Annandale has been directed to upgrade its primary wastewater treatment plant to a secondary treatment plant with sludge recycle that can meet an effluent standard of 11 mg/l BOD5. The following data are available: Flow = 0.15 m3/s, MLSS = 2,000 mg/L. Kinetic parameters: K, = 50 mg/L, Hmax = 3.0 d-, kų = 0.06 d-1, Y = 0.6 Existing plant effluent BOD5 = 84 mg/L. a. Calculate the SRT (Oc) and HRT (0) for the aeration tank. b. Calculate the required volume of the aeration tank. c. Calculate the food to microorganism ratio in the aeration tank. d. Calculate the volumetric loading rate in kg BOD3/m3-d for the aeration tank. e. Calculate the mass and volume of solids wasted each day, when the underflow solids concentration is 12,000 mg/L. 10 A
One way to measure ionization energies is ultraviolet photoelectron spectroscopy (UPS, or just PES), a technique based on the photoelectric effect. In PES, monochromatic light is directed onto a sample, causing electrons to be emitted. The kinetic energy of the emitted electrons is measured. The difference between the energy of the photons and the kinetic energy of the electrons corresponds to the energy needed to remove the electrons (that is, the ionization energy). Suppose that a PES experiment is performed in which mercury vapor is irradiated with ultraviolet light of wavelength 58.4 nm.
(a) What is the energy of a photon of this light in eV?
(b) Write an equation that shows the process corresponding to the first ionization energy of Hg.
(c) The kinetic energy of the emitted electrons is measured to be 10.75 eV. What is the first ionization energy of Hg in kJ/mol?
Answer:
Explanation:
From the given information:
The energy of photons can be determined by using the formula:
[tex]E = \dfrac{hc}{\lambda}[/tex]
where;
planck's constant (h) = [tex]6.63 \times 10^ {-34}[/tex]
speed oflight (c) = [tex]3.0 \times 10^8 \ m/s[/tex]
wavelength λ = 58.4 nm
[tex]E = \dfrac{6.63 \times 10^{-34} \ J.s \times 3.0 \times 10^8 \ m/s}{58.4 \times 10^{-9 } \ m}[/tex]
[tex]E =0.34 \times 10^{-17} \ J[/tex]
[tex]E = 3.40 \times 10^{-18 } \ J[/tex]
To convert the energy of photon to (eV), we have:
[tex]1 eV = 1.602 \times 10^{-19} \ J[/tex]
Hence
[tex]3.40 \times 10^{-18 } \ J = \dfrac{1 eV}{1.602 \times 10^{-19 } \ J }\times 3.40 \times 10^{-18 } \ J[/tex]
[tex]E = 2.12 \times 10 \ eV[/tex]
E = 21.2 eV
b)
The equation that illustrates the process relating to the first ionization is:
[tex]Hg_{(g)} \to Hg^+ _{(g)} + e^-[/tex]
c)
The 1st ionization energy (I.E) of Hg can be calculated as follows:
Recall that:
I.E = Initial energy - Kinetic Energy
I₁ (eV) = 21.2 eV - 10.75 eV
I₁ (eV) = 10.45 eV
Since ;
[tex]1 eV = 1.602 \times 10^{-19} \ J[/tex]
∴
[tex]10.45 \ eV = \dfrac{1.602 \times 10^{-19 } \ J }{ 1 \ eV}\times 10.45 \ eV[/tex]
Hence; the 1st ionization energy of Hg atom = [tex]1.67 \times 10^{-18} \ J[/tex]
[tex]1.67 \times 10^{-21} \ kJ[/tex]
Finally;
[tex]I_1 \ of \ the \ Hg (kJ/mol) = \dfrac{1.67 \times 10^{-21 \ kJ} \times 6.02 \times 10^{23} \ Hg \ atom }{1 \ Kg \ atom }[/tex]
[tex]\mathbf{= 1.005 \times 10^3 \ kJ/mol}[/tex]
Hydrogen gas is collected over water in an inverted buret. If the atmospheric pressure is 745 mm Hg, the vapor pressure of water is 18 mm Hg, and a 15.0 cm-high column of water remains in the buret, the pressure of the hydrogen gas is Hydrogen gas is collected over water in an inverted buret. If the atmospheric pressure is 745 mm Hg, the vapor pressure of water is 18 mm Hg, and a 15.0 cm-high column of water remains in the buret, the pressure of the hydrogen gas is:________
a. 745 mm Hg.
b. less than 727 mm Hg.
c. 763 mm.
d. 727 mm Hg.
Answer:
[tex]P_{H_2}=727mmHg[/tex]
Explanation:
Hello there!
In this case, according to the given data, it is possible to infer that the gas mixture lies on the 15.0 cm-high column of water, so that the total pressure or atmospheric pressure is given by:
[tex]P_{atm}=P_{water}+P_{H_2}[/tex]
Thus, since the atmospheric pressure is 745 mmHg and the vapor pressure of water is 18 mmHg, the pressure of hydrogen turns out to be:
[tex]P_{H_2}=P_{atm}-P_{water}\\\\P_{H_2}=745mmHg-18mmHg\\\\P_{H_2}=727mmHg[/tex]
Best regards!
What is the oxidation number of iron in FeO?
Answer:
+2
Explanation:
Answer:
2 electrons
Explanation:
In Iron (II) oxide, or Ferrous Oxide, or FeO, the Iron element (Fe) is bonded to the Oxygen, in the oxidation state of "2". This means that the Iron has accepted 2 electrons from the Oxygen.
Can someone please help me with this
Explanation:
¡ly / 3gVQKw3bly / 3gVQKw3ly / 3gVQKw3ly / 3gVQKw3