In the days before scuba gear, some divers descended to underwater depths in diving bells, which are basically just upside-down containers whose open ends face down. The bell allows the person inside to breathe the air trapped inside it, observe underwater objects and marine life, and work under the water.

Required:
a. If the bell is submerged to a depth of 30m below sea level, what is the water pressure at the air-water interface inside the bell?
b. If the air pressure inside the bell before submersion into the water was 1 atm (101.825 kPa), what air pressure does the person experience at that depth?

Answers

Answer 1

Answer:

a)  P = 4.03 10⁵ Pa, b)  P = 4.03 10⁵ Pa

Explanation:

a) The pressure as a function of the depth of a fluid is

          P =[tex]P_{atm}[/tex] + ρ g y

where Patm is the atmospheric pressure, the sea density of about 1025 kg / m³

let's calculate

         P = 1.01825 10⁵ + 1025 9.8 30

         P = 4.03 10⁵ Pa

b) When the hood is submerged, the water exerts a perpendicular force on the entire surface, in the equilibrium position, the air is compressed by this force until the pressure it exerts is equal to the external pressure (open at the lower), therefore the air pressure is

        P = 4.03 105 Pa

Answer 2

"[tex]3.958\times 10^5 \ Pa[/tex]" would be the pressure outside the bell .as well as the air pressure inside it. A further explanation is below.

According to the question,

Depth,

[tex]d = 20 \ m[/tex]

Pressure,

[tex]P_o = 1 \ atm[/tex]

             [tex]= 1.018\times 10^{5} \ Pa[/tex]

Now,

→ The water pressure outside the bell will be:

= [tex]P_o +p\times g\times d[/tex]

By putting the values, we get

= [tex]1.018\times 10^5+1000\times 9.8\times 30[/tex]

= [tex]3.958\times 10^5 \ Pa[/tex]

And inside the air pressure will be same as the water pressure.

Thus the response above is right.

Learn more:

https://brainly.com/question/22786261


Related Questions

A wave has a period 2.00 s, an amplitude 20.0 cm, and a wavelength 3.00 m. What is the speed of the wave?

a. 10.0 cm/s
b. 0.100 cm/s
c. 340 m/s
d. 0.667 m/s
e. 1.50 m/s

Answers

Answer:

a)

Explanation:

because if in 2 seconds have 20.0 cm/2s cm in 1 second have 10.0 cm/s

1) 1000 kg car takes travels on a circular track having radius 100 m with speed 10 m/s. What is the magnitude of the centripetal force acting on the car? *

1 point

1 N

100 N

1000 N

10000 N


2) 1000 kg car takes travels on a circular track having radius 100 m with speed 10 m/s. What is the magnitude of the acceleration of the car? *

1 point

0.1 m/s^2

1 m/s^2

10 m/s^2

100 m/s^2

Answers

Answer:

(1) 1000 N (2) 1 m/s²

Explanation:

(1) Given that,

The mass of a car, m = 1000 kg

Radius of a circular track, r = 100 m

Speed of the car, v = 10 m/s

We need to find the magnitude of the centripetal force acting on the car. The magnitude of the centripetal force is given by :

[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{1000\times (10)^2}{100}\\\\F=1000\ N[/tex]

So, the correct option is (c) i.e. 1000 N

(2).The mass of a car, m = 1000 kg

Radius of a circular track, r = 100 m

Speed of the car, v = 10 m/s

We need to find the magnitude of the centripetal acceleration of the car. The magnitude of the centripetal acceleration is given by :

[tex]a=\dfrac{v^2}{r}\\\\a=\dfrac{(10)^2}{100}\\\\a=1\ m/s^2[/tex]

So, the correct option is (b) i.e. [tex]1\ m/s^2[/tex]

Three moles of a monatomic ideal gas are heated at a constant volume of 1.20 m3. The amount of heat added is 5.22x10^3 J.(a) What is the change in the temperature of the gas?________ ? K(b) Find the change in its internal energy.________ ? J(c) Determine the change in pressure.________ ? Pa

Answers

Answer:

A) 140 k

b ) 5.22 *10^3 J

c) 2910 Pa

Explanation:

Volume of Monatomic ideal gas = 1.20 m^3

heat added ( Q ) = 5.22*10^3 J

number of moles  (n)  = 3

A ) calculate the change in temp of the gas

since the volume of gas is constant no work is said to be done

heat capacity of an Ideal monoatomic gas ( Q ) = n.(3/2).RΔT

make ΔT subject of the equation

ΔT = Q / n.(3/2).R

    = (5.22*10^3 ) / 3( 3/2 ) * (8.3144 J/mol.k )

    = 140 K

B) Calculate the change in its internal energy

ΔU = Q  this is because no work is done

therefore the change in internal energy = 5.22 * 10^3 J

C ) calculate the change in pressure

applying ideal gas equation

P = nRT/V

therefore ; Δ P = ( n*R*ΔT/V )

                        = ( 3 * 8.3144 * 140 ) / 1.20

                        = 2910 Pa

A) The change in the temperature of the gas is; ΔT = 139.5 K

B) The change in internal energy of the gas is; ΔU = 5.22 × 10³ J

C) The change in pressure of the gas is; ΔP = 2899.5 Pa

We are given;

Volume of Monatomic ideal gas; V = 1.2 m³

Amount of heat added; Q = 5.22 × 10³ J

number of moles; n = 3

A) To calculate the change in temperature of the monatomic idea gas, we will use formula;

Q = ³/₂nRΔT

Where R is a constant = 8.314 J/mol.K

ΔT is the change in temperature

Making ΔT the subject of the formula;

ΔT = ²/₃(Q/(nR))

ΔT = ²/₃(5.22 × 10³)/(3 × 8.314)

ΔT = 139.5 K

B) Due to the fact that no work was done, then from first law of thermodynamics, we can say that;  

ΔU = Q

Thus;

change in internal energy; ΔU = 5.22 × 10³ J

C) The change in pressure will be calculated from the formula;

ΔP = (n*R*ΔT)/V

ΔP = (3 * 8.314 * 139.5)/1.2

ΔP = 2899.5 Pa

Read more at; https://brainly.com/question/14122248

. A car going initially with a velocity 15 m/s accelerates at a rate of 2 m/s2 for 10 seconds. It then accelerates at a rate of -1.5 m/s until stop. Find the car’s maximum speed. Calculate the total distance traveled by the car.

Answers

Answer:

The maximum speed of the car is 35 m/s

The total distance traveled by the car is 658.33 m

Explanation:

Given;

initial velocity of the car, u = 15 m/s

acceleration of the car, a = 2 m/s²

time of car motion, t = 10 s

(i)

Initial distance traveled by the car is given by;

d₁ = ut + ¹/₂at²

d₁ = (15 x 10) + ¹/₂(2)(10)²

d₁ = 150 + 100

d₁ = 250 m

The maximum speed of the car during this is given by;

v² = u² + 2ad₁

v² = (15)² + (2 x 2 x 250)

v² = 1225

v = √1225

v = 35 m/s

(ii)

The final distance cover by the car during the deceleration of 1.5 m/s².

Note: the final or maximum speed of the car becomes the initial velocity during deceleration.

v² = u² + 2ad₂

where;

v is the final speed of the car when it stops = 0

0 = u² + 2ad₂

0 = (35²) + (2 x - 1.5 x d₂)

0 = 1225 - 3d₂

3d₂ = 1225

d₂ = 1225 / 3

d₂ = 408.33 m

The total distance traveled by the car is given by;

d = d₁ + d₂

d = 250 m + 408.33 m

d = 658.33 m

Give real-world examples of evidence that supports the evolution of Earth in each category:
Deposition -
Chemical weathering -
Volcanic eruption -

Answers

Answer:

concave shape of the waverock

Explanation:

The wave rock is formed by the weathering of the surrounding area. This helps in proving the deposition part, as the wave rock was below the ground, occurred due to deposition of rock years over the years. It is made from very tough material from its surroundings. The weathering reduces the surrounding terrain, while the bedrock remains to witness for the history.  Also, volcanic eruptions have been changing earth for a long time. (first of all, the theory that a volcanic eruption helped in making dinos go extinct.) Real world examples include: Ash and sulfur went pretty high into Earth's atmosphere because of the Tambora eruption which in turn dimmed incoming sunlight, and lowered global temperatures by about 3°F. The Mount Pinatubo eruption in the Philippines in 1991 cooled the planet by about 1°F.

A scuba diver wears weights as well as a buoyancy compensator to establish neutral buoyancy while diving. The buoyancy compensator can either be inflated with air or the air in it can be released. Explain how a scuba diver uses the buoyancy compensator to dive and to rise back to the surface.

Answers

Answer:

With more air is more buoyancy. When deflated or released the scuba diver is less buoyant.

Explanation:

The compensator is a Buoyancy control device that has an inflatable air bladder.When we have more air out into the inflatable bladder, then one is more buoyant. If the air is released from the bladder, then one is less buoyant. We add air through an air inflation valve. Air is also then released using air-deflation valves.

Buoyancy can be defined as an upward force which is exerted on an object that is fully or partially immersed in water

when one is less buoyant than water, it means that the upward pressure is more than the downward pressure of that person and his equipment. Then he will float. In a case of negative buoyancy, we have downward pressure of this person and his equipment to be more than the upward pressure of the water. Then sinking will happen.

HELP THIS IS DUE IN 5 MINUTES!!!!!!!!!!!! WILL GIVE BRAINLIEST

what is the definition of total velocity?

Answers

Answer:

Image result for total velocity definition

The average speed of an object is defined as the distance traveled divided by the time elapsed.

Explanation:

Which describes the genetic disorder that causes neurons in the brain to break down? scribes the genetic disorder that causes neurons in the brain to break down need help will mark brainliest

Answers

Genetic disorders and Parkinson's disease.

Which temperature is warmer than the freezing point of water?
O A. OK
O B. 33K
O C. 1°C
O D.O°F

Answers

C. 1 Degree
The freezing point and melting point is 0 Degrees or 32 Degrees Fahrenheit

Answer:

C 1 degree

Explanation:

You are explaining to friends why astronauts feel weightless orbiting in the space shuttle, and they respond that they thought gravity was just a lot weaker up there. Convince them and yourself that it isn't so by calculating how much weaker gravity is 200 above the Earth's surface.
Delta G/G = ? %

Answers

Answer:

The gravity is 87.4% as strong as at the Earth’s surface.

Explanation:

Hope this helped!

What would happen if there is more male hyenas than female hyenas in a population?



Choices:
Male hyenas will compete to mate with the females.

Some male hyenas will die.

Male hyenas for wait for more females to join the population.

Answers

A. Because that’s how the wild works.

Answer:

Option 1

Explanation:

I always see animals do that

A ball is launched from a 300m cliff and lands 380m away from the cliff in 9 seconds. Calculate the initual speed and the angle of the ball when it was launched.​

Answers

Answer:

Explanation:

Given

Maximum height H = 300m

Range (horizontal distance) = 380m

Required

Initial speed U and the angle of the ball when it was launched.​

Range = U√2H/g

380 = U√2(300)/9.8

380 = U√600/9.8

380 = 7.8246U

U = 380/7.8246

U = 48.57m/s

The initial speed is 48.57m/s

b) Using the formula for calculating time of flight;

T = 2Usin theta/g

9 = 2(48.57)sin theta/9.8

9*9.8 = 97.14sin theta

88.2 = 97.14sin theta

88.2/97.14 = sin theta

sin theta = 0.9079

theta = sin^-1(0.9079)

theta = 65.23°

hence the angle when the ball was launched is 65.23°

A sample of gas, initially with a volume of 1.0 L, undergoes a thermodynamic cycle. Find the work done by the gas on its environment during each stage of the cycle described below. (Enter your answers in J.)

Answers

Answer:

(a) W₁ = 3293.06 J = 3.293 KJ

(b) W₂ = 0 J

(c) W₃ = - 506.625 J = - 0.506 KJ

(d) W₄ = 0 J

(e) W = 2786.435 J = 2.786 KJ

Explanation:

The complete question has following parts:

(a) First gas expands from a volume of 1 L to 6 L at a constant pressure of 6.5 atm

(b) Second, the gas is cooled at constant volume until the pressure falls to 1 atm

(c) Third, the gas is compressed at a constant pressure of 1 atm from a volume of 6 L to 1 L.

(d) Finally the gas is heated until its pressure from 1 atm to 6.5 atm at constant volume

(e) what is the net work?

ANSWERS:

(a)

The work done by a gas at constant pressure is given as follows:

W = PΔV

where,

W = Work done by the gas

P = Constant Pressure of the Gas

ΔV = Change in Volume of The gas

Therefore, for the first step:

P = P₁ = (6.5 atm)(1.01325 x 10⁵ Pa/1 atm) = 6.58613 x 10⁵ Pa

ΔV = ΔV₁ = 6 L - 1 L = (5 L)(0.001 m³/1 L) = 5 x 10⁻³ m³

W = W₁

Therefore,

W₁ = (6.58613 x 10⁵ Pa)(5 x 10⁻³ m³)

W₁ = 3293.06 J = 3.293 KJ

(b)

The work done at a constant volume by a gas is always zero due to no change in volume:

W₂ = P₂ΔV₂

W₂ = P₂(0)

W₂ = 0 J

(c)

For the third step:

P = P₃ = (1 atm) = 1.01325 x 10⁵ Pa

ΔV = ΔV₃ = 1 L - 6 L = (- 5 L)(0.001 m³/1 L) = - 5 x 10⁻³ m³

W = W₃

Therefore,

W₃ = (1.01325 x 10⁵ Pa)(-5 x 10⁻³ m³)

W₃ = - 506.625 J = - 0.506 KJ

(d)

The work done at a constant volume by a gas is always zero due to no change in volume:

W₄ = P₄ΔV₄

W₄ = P₄(0)

W₄ = 0 J

(e)

Hence, the net work is given as follows:

W = W₁ + W₂ + W₃ + W₄

W = 3293.06 J + 0 J + (- 506.625 J) + 0 J

W = 2786.435 J = 2.786 KJ

How much work is done by the gravitational force on the block?

Answers

Answer:

Work = Mass * Gravity * Height and is measured in Joules. Imagine you find a 2 -Kg book on the floor and lift it 0.75 meters and put it on a table. Remember, that “force” is simply a push or a pull. If you lift 100 kg of mass 1-meter, you will have done 980 Joules of work.

Explanation:

The electron dot diagram shows the arrangement of dots without identifying the element.

? with 2 dots above and 1 dot each right, below, left.

Which element’s symbol could replace the question mark in the diagram?

boron (B)
neon (Ne)
rubidium (Rb)
arsenic (As)

Answers

Answer:

Arsenic (As)

Explanation:

Arsenic is the only answer choice that has five valence electrons like the electron dot structure shows.

Answer:

Arsenic (As)

Explanation:

A step-down transformer converts 120 V to 5 V in a phone charger. If the primary coil has 600 turns, how many turns are in the secondary coil? Show all work with correct answer and unit as well.

Answers

Answer:

25 turns

Explanation:

Given the following data;

Input voltage = 120V

Output voltage = 5V

Number of turns in primary coil = 600 turns

[tex] \frac {Ns}{Np} = \frac {Vs}{Vp} [/tex]

Where;

Ns is the number of turns on the secondary coil. Np is the number of turns on the primary coil. Vs is the voltage across the secondary coil (output voltage). Vp is the voltage across the primary coil (input voltage).

Substituting into the equation, we have;

[tex] \frac {Ns}{600} = \frac {5}{120} [/tex]  

Cross-multiplying, we have;

[tex] 120*Ns = 600*5[/tex]

[tex] 120Ns = 3000[/tex]

[tex] Ns = \frac {3000}{120}[/tex]

Ns = 25 turns

Therefore, the number of turns in the secondary coil is 25 turns.

Hence, it is a step-down transformer because the number of turns on the primary coil is greater than the number of turns on the secondary coil. Consequently, the output voltage (5V) will be lesser than the input voltage (120V).

10- The coefficient of volumetric expansion for gold is 4.20 x 10°/C°. The density of gold is
19 300 kg/m at 0.0 °C. What is the density of gold at 1050 °C?
(a) 20 200 kg/m
(b) 19 000 kg/m
(c) 18 500 kg/m
(d) 19 300 kg/m
(e) 18 800 kg/m

Answers

Answer:

 ρ = 19215 kg / m³ , the answer the correct  is D

Explanation:

All materials are sold when heated, in first approximation

              ΔV = β V₀ (T -T₀)

for this case

              ΔV = 4.20 10⁻⁶ Vo (1050 - 0)

              ΔV = 4.41 10⁻³ Vo m³

              V-Vo = 4.41 10⁻³ Vo

              V = 1.00441 Vo

density is defined by

           ρ = m / V

a T = 0ºc

            ρ₀ = m / Vo

aT= 1050ºC

             

           ρ = m / V

           ρ = m / (1,00441 Vo)

           ρ = 1 / 1.00441      m/Vo

          ρ = 0.9956 ρ₀

          ρ = 0.9956 19300

          ρ = 19215 kg / m³

when checking the answers the correct one is D

A solid sphere rolling without slipping on a horizontal surface. If the translational speed of the sphere is 2.00 m/s, what is its total kinetic energy?

Answers

Answer:

The total kinetic energy is 2.8m J. (NOTE: m is mass of the sphere)

Explanation:

The total kinetic energy of a sphere is given by the sum of the rotational kinetic energy and the translational kinetic energy. That is,

[tex]K_{Total} = K_{R} + K_{T}[/tex]

The rotational kinetic energy [tex]K_{R}[/tex] is given by

[tex]K_{R} = \frac{1}{2}I\omega^{2}[/tex]

Where [tex]I[/tex] is the moment of inertia

and [tex]\omega[/tex] is the angular velocity

The translational kinetic energy [tex]K_{T}[/tex] is given by

[tex]K_{T} = \frac{1}{2}mv^{2}[/tex]

Where [tex]m[/tex] is the mass

and [tex]v[/tex] is the translational speed (velocity)

∴ [tex]K_{Total} = \frac{1}{2}I\omega^{2} + \frac{1}{2}mv^{2}[/tex]

But, the moment of inertia [tex]I[/tex] of a sphere is given by

[tex]I = \frac{2}{5}mr^{2}[/tex]

Where [tex]m[/tex] is mass

and [tex]r[/tex] is radius

∴ [tex]K_{Total} = \frac{1}{2}\times \frac{2}{5}mr^{2} \omega^{2} + \frac{1}{2}mv^{2}[/tex]

[tex]K_{Total} = \frac{1}{5}mr^{2} \omega^{2} + \frac{1}{2}mv^{2}[/tex]

Also, [tex]\omega = \frac{v}{r}[/tex]

∴ [tex]\omega^{2} = \frac{v^{2} }{r^{2} }[/tex]

Then,

[tex]K_{Total} = \frac{1}{5}mr^{2} \times \frac{v^{2} }{r^{2} } + \frac{1}{2}mv^{2}[/tex]

[tex]K_{Total} = \frac{1}{5}mv^{2} + \frac{1}{2}mv^{2}[/tex]

∴ [tex]K_{Total} = \frac{7}{10}mv^{2}[/tex]

From the question, [tex]v = 2.00 m/s[/tex]

Then,

[tex]K_{Total} = \frac{7}{10}m(2.00)^{2}[/tex]

[tex]K_{Total} = \frac{7}{10}m\times 4.00[/tex]

[tex]K_{Total} = 2.8m J[/tex]

Hence, the total kinetic energy is 2.8m J. (NOTE: m is mass of the sphere)

A current-carrying wire passes through a region of space that has a uniform magnetic field of 0.96 T. If the wire has a length of 2.7 m and a mass of 0.79 kg, determine the minimum current needed to levitate the wire.

Answers

Answer:

I = 2.99 A

Explanation:

magnetic field, B = 0.96 T, length of wire, l = 2.7 m, mass of wire, m = 0.79 kg.

Since it is expected that the wire would vibrate or move in the magnetic field, from Newton's second law of motion;

F = mg

where F is the force on the wire, m is the mass of the wire and g is the acceleration due to gravity.

But,

F = BIL

⇒ BIL = mg

0.96 x I x 2.7 = 0.79 x 9.8

2.592I = 7.742

I = [tex]\frac{7.742}{2.592}[/tex]

 = 2.9869

I = 2.99 A

The required minimum current is 2.99 A.

You are hanging on to the edge of a merry-go-round, and must exert a force of 100 N to hang on. If the speed of the merry-go-round doubles, how much force will you need to exert to hang on?

Answers

Answer:

If the speed of the merry-go-round doubles, the force you will need to exert to hang on is 400 N.

Explanation:

Given;

initial force exerted to hang on, F₁ = 100 N

The force exerted on the merry-go-round in order to hang on must be an inward force known as centripetal force.

Centripetal force is given by;

[tex]F_c = \frac{mv^2}{r} \\\\keeping \ "m" \ and \ "r" \ constant, we \ will \ have \ the \ following \ equation;\\\\\frac{F_c_1}{v_1^2} = \frac{F_c_2}{v_2^2} \\\\F_c_2 = \frac{F_c_1*v_2^2}{v_1^2}\\\\when \ the \ speed\ doubles \ i.e, v_2 = 2v_1\\\\ F_c_2 = \frac{F_c_1*(2v_1)^2}{v_1^2}\\\\ F_c_2 = \frac{F_c_1*4v_1^2}{v_1^2}\\\\F_c_2 = F_c_1 *4\\\\F_c_2 = 4(F_c_1)\\\\F_c_2 = 4 (100 \ N)\\\\F_c_2 = 400 \ N[/tex]

Therefore, If the speed of the merry-go-round doubles, the force you will need to exert to hang on is 400 N.

Please answer my question

Answers

Answer:

Answer is (b) Mercury, venus and Mars.

Explanation:

i think b is correct!!

;-) :-) :-) :-)

Define Hydrostatic Equilibrium

Answers

Answer:

well, in my view,

In fluid mechanics, hydrostatic equilibrium or hydrostatic balance (also known as hydrostasy) is the condition of a fluid or plastic solid at rest. This occurs when external forces such as gravity are balanced by a pressure-gradient force.

Assume a hockey player accelerates from 0 ft/s to 24 ft/s over a period of 2
seconds. What is his acceleration if his direction does not change? Explain in
words what this acceleration means.

Answers

Answer:

12ft/s or 4m/s

Explanation:

Is Natural Gas nonrenewable or renewable? Why? Use in your own words.

Answers

Answer:

Natural gas is non renewable energy.

Explanation:

Because they were formed from the buried reamains of plants and animals that live a million years ago. It is formed from fossil fuels.

7. It is the art of drawing solid objects on two-dimensional surfaces.

Answers

Explanation:

Perspective- the art of drawing solid objects on a two-dimensional surface so as to give the right impression of their height, width, depth, and position in relation to each other when viewed from a particular point.

If Earth’s Moon were replaced with a typical neutron star, what would the angular diameter of the neutron star be as seen from Earth?

Answers

Answer:

[tex]0.00005202\ \text{rad}=0.003^{\circ}[/tex]

Explanation:

d = Diameter of typical neutron star = 20 km = 20000 m

D = Distance between Earth and Moon = [tex]384.4\times 10^6\ \text{m}[/tex]

Here, [tex]D>>d[/tex] so we use small angle approximation

[tex]\delta=\dfrac{d}{D}\\\Rightarrow \delta=\dfrac{20000}{384.4\times 10^6}\\\Rightarrow \delta=0.00005202\ \text{rad}=\dfrac{0.00005202\times 180}{\pi}=0.003^{\circ}[/tex]

The angular diameter of the neutron star would be [tex]0.00005202\ \text{rad}=0.003^{\circ}[/tex] from Earth.

Light from two lasers is incident on an opaque barrier with a single slit of width 4.0 x 10-5 m. One laser emits light of wavelength 4.0 x 10-7 m and the other is 6.0 x 10-7 m. A screen to view the light intensity pattern is 2.0 m behind the barrier. What is the distance from the center of the pattern to the nearest completely dark spot (dark for both colors)?

Answers

Answer:

y = 6 10⁻² m

Explanation:

This is a diffraction exercise which is described by the expression

          a sin θ = m λ

we can use trigonometry to find the distance from the inside of the screen to the dark point (y)

          tan θ = y / L

angles are very small in diffraction experiments, so we can approximate

          tan θ = sin θ /cos θ = sin θ

          sin θ = y / L

substituting

         a (y / L) = m λ

Let's find the points where the intensity becomes zero

         y = m L λ / a

λ₁ = 4.0 10⁻⁷ m

m = 1

          y = 1 2.0 4.0 10⁻⁷/ 4.0 10⁻⁵

          y = 2 10⁻² m

m = 2

          y = 4 10⁻² m

λ₂ = 6.0 10⁻⁷ m

m = 1

          y = 1 2.0 6.0 10⁻⁷ / 4.0 10⁻⁵

          y = 3 10⁻² m

m = 2

          y = 6 10⁻² m

if we want a point where the two colors are dark, we set the two expressions equal

          y₁ = y₂

          m₁ L  λ₁ / a = m₂ L  λ₂ / a

          m₁/m₂ =  λ₂/λ₁

          m₁ / m₂ = 6 10⁻⁷ / 4 10⁻⁷

          m₁ / m₂ = 1.5

since the quantities m must be integers, the smallest relation that the relation fulfills is

            m₁ = 3

            m₂ = 2

the distance for this destructive interference is

           y = 3 2 4.0 10⁻⁷ / 4.0 10⁻⁵

           y = 6 10⁻² m

this is the first point where the minimum of the two wavelengths coincide

What is the magnitude of the change in potential energy of the block-spring system when it travels from its lowest vertical position to its highest vertical position?

Answers

Answer:

 ΔU = 2 mg h

Explanation:

In a spring mass system the potential energy is U = m g h

where h is measured from the equilibrium point of the spring

the potential energy at the highest point is

         U₁ = m g h

the potential energy at the lowest point is

         U₂ = m g (-h)

instead in this energy it is

          ΔU = 2 mg h

In this two points the kinetic energy is zero, but there is elastic potential energy that has the same value in the two points, so its change is zero

Potential energy is defined as the energy stored in a body which may convert into kinetic energy when moved.

The Formule of the potential energy is [tex]mgh[/tex] The correct answer is 0

Hence, [tex]U = 2 mg h[/tex]

 The H stated as the measured from the equilibrium point of the spring

Therefore, the potential energy at the maximum point is  [tex]U_1 = m g h[/tex]  and the potential energy at the minimum point is    [tex]U_2 = m g (-h)[/tex]

Hence, after solving it we got

         [tex]U_1 -U_2 = 2 mg h[/tex]

Therefore, the energy change in the process is 0.

For more information, refer to the link:-

https://brainly.com/question/2127750

An 7.40 kg block drops straight down from a height of 0.83 m, striking a platform spring having a force constant of 9.50 102 N/m. Find the maximum compression of the spring.

Answers

Answer:

0.25 m.

Explanation:

mass of the block = 7.40 kg, height = 0.83 m, force constant of the spring = 9.50 x [tex]10^{2}[/tex] N/m.

The maximum compression on the spring can be determined by;

Potential energy stored in the spring = [tex]\frac{1}{2}[/tex] K[tex]x^{2}[/tex]

But, potential energy = mgh

So that,

mgh = [tex]\frac{1}{2}[/tex] K[tex]x^{2}[/tex]

7.4 x 9.8 x 0.83 = 9.50 x [tex]10^{2}[/tex] x [tex]x^{2}[/tex]

60.1916 = 9.50 x [tex]10^{2}[/tex] x [tex]x^{2}[/tex]

[tex]x^{2}[/tex]= [tex]\frac{60.1916}{9.50*10^{2} }[/tex]

  = 0.06336

x = 0.2517

x = 0.25 m

The maximum compression of the spring is 0.25 m.

Suppose you put an ice cube into a cup of hot tea. In what direction does energy in the form of heat flow? What happens to the ice cube as this flow of energy occurs?

Answers

Answer:

The energy flows between the ice and the tea equally. The table below shows the temperatures of several different objects made of the same material.

Other Questions
In a sample of 57 temperature readings taken from the freezer of a restaurant, the mean is 29.6 degrees and the population standard deviation is 2.7 degrees. What would be the 80% confidence interval for the temperatures in the freezer? please read this and give me your honest advice.thank you Factorise completely 28x2y2-21x2y3 10 points slope of (-2,-4) and (6,7)(explain) WORd problem I hate word problems please help in image bellow A cold can of juice is removed from the refrigerator and is placed outdoors on a warm day m. After several minutes moisture appears on the outside of the cold can . What best explains why the moisture appears 55+(-72)-(-45)=xwhat is x? A $270 suit is marked down by 10%. Find the sale price. How many atoms of phosphorus are in 5.70 mol of copper(II) phosphate? HELPPPP...The belief that business and factories should be owned by the public and run for the welfare of all A- Socialism B- Capitalism C- Marxism D- Proletarianism discriminant of 3x^2-2x=0 Which trigonometric identity is the reciprocal of the cos identity?A. cosecB. secC. sinD. cot According to a zoologist's study, the equation y=0.1651x+149.5738 models the weight of a baby giraffe, in pounds, during the giraffe's first 1000 days, where x is the number of days since birth.According to this regression equation, what is the approximate weight of a baby giraffe 425 days after birth? about 70 lb about 105 lb about 215 lb about 220 lb solve the equation using mental math n divide 9=9 From Allen (1990, 113, 162). The interactive computer system at Gnu Glue has 20 communication lines to the central computer system. The lines operate independently and the probability that any particular line is in use is 0.6. () What is the probability that 10 or more lines are in use? Compare the exact binomial solution and the normal approximation solution to this problem. (ii) Do the assumptions needed for the normal approximation make sense? 1. H2SO4, sulfuric acid, contains three different types of atoms: hydrogen (H), sulfur (S), and oxygen (O). Each of these atoms represents a different . Since the three types are combined in a fixed ratio, this means that H2SO4 is a(n) molecule. 2. The smallest unit of matter that retain all of the physical properties of that type of matter is a(n) atom. 3. is anything that occupies space and/or has any substance. 4. If two or more atoms are bonded together, they form a(n) . 5. The scientific study of matter is called . 6. Within a plant, water (H2O) and carbon dioxide (CO2) can be combined (using the energy of sunlight) to produce glucose (C6H12O6) and oxygen (O2). If you were to write out this chemical reaction, water and carbon dioxide are each an example of a(n) while glucose and Which force results from charged particles NEED HELP ASAP!!! PLZ WILL MARK BRAINLIEST!!!!!World War II-era military manufacturing plants that built bombers, cargo planes, ammunition, and explosives were constructed in towns like Tulsa, Midwest City, and __________.A.McAlesterB.AdaC.TahlequahD.Frederick The majority of ranches were located _____________________.a.between the lower Colorado River and the Brazos Riverb.north of the Nueces Riverc.north of the Brazos Riverd.south of the Nueces River What is the relationship between the Second Great Awakening and the 19th century reform movements?Group of answer choicesA decline in religious practices led to a decline in the reform movementsThe reform movements helped to jump start the Second Great Awakening.There is no relationship between the Second Great Awakening and the 19th century reform movements.The Second Great Awakening sparked a revival of religion in the US that led many to be active reformers based on moral conviction.