Sonic Corporation purchased and installed electronic payment equipment at its drive-in restaurants in San Marcos, TX, at a cost of $37,800. The equipment has an estimated residual value of $2,400. The equipment is expected to process 261,000 payments over its three-year useful life. Per year, expected payment transactions are 62,640, year 1; 143,550, year 2; and 54,810, year 3.

Complete a depreciation schedule for each of the alternative methods.
1. Straight-line.
2. Units-of-production.
3. Double-declining-balance.

Answers

Answer 1

Annual depreciation = ($37,800 - $2,400) / 3 years = $11,800 per year

Depreciation per unit = ($37,800 - $2,400) / 261,000 = $0.139 per unit

Depreciation rate = 2 / 3 = 0.667 or 66.7%

Complete a depreciation schedule for each of the alternative methods.

Method of the straight line:

Annual depreciation = (Cost - Residual value) / Useful life

Annual depreciation = ($37,800 - $2,400) / 3 years = $11,800 per year

Schedule of depreciation: shown in the below table

Units-of-production method:

Depreciation per unit = (Cost - Residual value) / Total units of production

Depreciation per unit = ($37,800 - $2,400) / 261,000 = $0.139 per unit

Depreciation schedule:

Double-declining-balance method:

Depreciation rate = 2 / Useful life

Depreciation rate = 2 / 3 = 0.667 or 66.7%

Depreciation schedule: shown in the below table

Learn more about the rate here:

https://brainly.com/question/14731228

#SPJ1

Sonic Corporation Purchased And Installed Electronic Payment Equipment At Its Drive-in Restaurants In
Sonic Corporation Purchased And Installed Electronic Payment Equipment At Its Drive-in Restaurants In
Sonic Corporation Purchased And Installed Electronic Payment Equipment At Its Drive-in Restaurants In

Related Questions

Write about plane of contact , pole and polar plane ?
Explain all briefly!

Answers

The concepts of plane of contact, pole, and polar plane are related to the study of conic sections in geometry.

Plane of Contact:

The plane of contact is a plane that passes through the points of intersection of a cone and a plane. In other words, when a plane intersects a cone, the points where the plane and cone touch determine a plane of contact. This plane is important in determining the properties of the conic section that is formed by the intersection.

Pole:

The pole is a point that is used to define a polar plane. It is a point that is not on the plane and is located on the axis of the cone. When a plane passes through the pole, it intersects the cone in a conic section. The pole is a useful concept in determining the properties of the conic section.

Polar Plane:

The polar plane is a plane that passes through the pole and is perpendicular to the plane of contact. It is the plane that contains the polar axis, which is the axis of the cone passing through the pole. The polar plane is important in determining the properties of the conic section that is formed by the intersection of the cone and the plane of contact.

In summary, the plane of contact, pole, and polar plane are all concepts that are used in the study of conic sections. The plane of contact is a plane that passes through the points of intersection of a cone and a plane. The pole is a point on the axis of the cone that is used to define a polar plane. The polar plane is a plane that passes through the pole and is perpendicular to the plane of contact. These concepts are important in determining the properties of conic sections and are used in various applications, including optics, astronomy, and engineering.

Answer:

Step-by-step explanation:

Sure! Let's start with the plane of contact.


Plane of Contact:

The plane of contact is a term commonly used in geometry and physics. When two objects come into contact with each other, their surfaces touch at a particular area. This area of contact is known as the plane of contact. It is a two-dimensional surface that represents the point of contact between the two objects.


Imagine two books placed on a table. The area where the bottom surface of each book touches the table is the plane of contact. It is like a flat sheet that separates the objects and defines the region where they interact with each other.


Pole and Polar Plane:

The concepts of pole and polar plane are closely related to the plane of contact. Let's explore them:


Pole:

In geometry, the pole is a point that represents the point of contact between a line and a plane. When a line is in contact with a plane, the point of contact is called the pole. It is the specific point where the line intersects the plane.


For example, if you have a line placed on a tabletop, the point where the line touches the surface is its pole.


Polar Plane:

The polar plane is the plane that contains all the lines passing through a specific point called the pole. In other words, the polar plane is a plane that is perpendicular to the line at its pole.


Continuing with the previous example, if you have a line touching the tabletop at a certain point, the polar plane would be a plane that is perpendicular to the line at that point. It includes all the lines passing through that point.


The pole and polar plane are connected in such a way that every line passing through the pole lies on the polar plane, and the polar plane contains the pole.


In summary, the plane of contact represents the area where two objects touch each other, while the pole represents the point of contact between a line and a plane. The polar plane is a plane that contains all the lines passing through the pole.


Hope it helps!!

What is the meaning of "Since the angle from axis j to axis i is [tex]\pi (i-j)/n[/tex], it follows that [tex]s _{i}\circ s_{j}=r_{i-j}[/tex]?

Answers

This statement describes the relationship between symmetries and rotations

Explaining the meaning of the statement as stated

In this context, "axis i" and "axis j" refer to two different coordinate axes, and "n" is the total number of axes. The notation "s_i" represents a reflection transformation across axis i, and "r_k" represents a rotation transformation that rotates the entire coordinate system by an angle of 2πk/n, where k is an integer between 0 and n-1.

The statement "Since the angle from axis j to axis i is π(i-j)/n, it follows that s_i ∘ s_j = r_{i-j}" means that if we reflect the coordinate system across axis i, and then reflect it again across axis j, the resulting transformation is equivalent to rotating the entire coordinate system by an angle of 2π(i-j)/n. In other words, the composition of the two reflections is equivalent to a single rotation.

This relationship is important in the study of group theory and symmetry, where it is used to understand the properties of groups of transformations that preserve the symmetry of an object or system.

Read more about symmetries and rotations at

brainly.com/question/2762589

#SPJ1

Solve the equation. Write the solution set with the exact values given in terms of common or natural logarithms. Also give approximate solutions to at least 4 decimal places.

539=13^r+9

Answers

The solution for r is:

r = ln(539)/ln(13) - 9

And an estimation is:

r = -6.5478

How to solve the exponential equation?

Remember the rule for logarithms of powers:

ln(x^n) = n*ln(x)

Now let's look at our equation, here we have:

539 = 13^(r + 9)

We want to solve this equation for r, to do so, we can apply the natural logarithm in both sides:

ln(539) = ln( 13^(r + 9))

Using the rule we can rewrite this as:

ln(539)= (r + 9)*ln(13)

Now just solve the equation for r:

r = ln(539)/ln(13) - 9

And an approximate solution is:

r = -6.5478

Learn more about logarithms at.

https://brainly.com/question/13473114

#SPJ1

Determine the value(s) for which the rational expression −6a−10−5a−8 is undefined. If there's more than one value, list them separated by a comma, e.g. a=2,3.

Answers

Since the rational expression is incorrectly constructed, I am unable to determine what it actually means.

I'll attempt to respond to this in a general approach so that you may try to apply it to the specific issue.

Let's say that this is our expression of reason:

              [tex]\frac{-6a-10}{-5a-8}[/tex]

There is no undefined value because the numerator is -12d and this component is unaffected by any value of d.

-5a-8 is the denominator.

Any rational expression that has a denominator equal to zero is now undefined. (we can not divide by zero)

Thus, a value that is undefined will be when

-5a-8 = 0

d = 8/5

This means that the number d = 8/5 is invalid because it would cause the denominator to be equal to 0.

to understand more about rational expression visit:

brainly.com/question/17064258

#SPJ1

1) Find AB
B
A 9 in
Use the Law of
Sines:
SinA
a
(0) 8 in
A
54°
11 in
D 7 in
5 in
SinB
b
12
31 in
SinC
C
Remember

Answers

Check the picture below.

[tex]\textit{Law of sines} \\\\ \cfrac{\sin(\measuredangle A)}{a}=\cfrac{\sin(\measuredangle B)}{b}=\cfrac{\sin(\measuredangle C)}{c} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{\sin(54^o)}{31}=\cfrac{\sin(12^o)}{AB}\implies AB\sin(54^o)=31\sin(12^o) \\\\\\ AB=\cfrac{31\sin(12^o)}{\sin(54^o)}\implies AB\approx 8~in[/tex]

Make sure your calculator is in Degree mode.

PLEASE SOMEONE HELPP!!!!
i know that answer Is −12
8
1

but i need explain! 100points, plus 5 Stars+ brainliest
[tex] - 3 \frac{3}{4} - x = -6 \frac{1}{6} [/tex]

THIS IS MATH FOR 7TH GRADE!!

Answers

Answer:

[tex]x=2\frac{5}{12}[/tex]

Step-by-step explanation:

Given equation:

[tex]-3\frac{3}{4}-x=-6\frac{1}{6}[/tex]

Begin by adding x to both sides of the equation:

[tex]-3\frac{3}{4}-x+x=-6\frac{1}{6}+x[/tex]

[tex]-3\frac{3}{4}=-6\frac{1}{6}+x[/tex]

Add -6¹/₆ to both sides of the equation:

[tex]-3\frac{3}{4}+6\frac{1}{6}=-6\frac{1}{6}+x+6\frac{1}{6}[/tex]

[tex]-3\frac{3}{4}+6\frac{1}{6}=x[/tex]

Swap sides:

[tex]x=6\frac{1}{6}-3\frac{3}{4}[/tex]

Rewrite the mixed numbers as improper fractions by multiplying the whole number by the denominator of the fraction, adding this to the numerator of the fraction, and placing the answer over the denominator:

[tex]x=\dfrac{6 \times6+1}{6}-\dfrac{3 \times 4+3}{4}[/tex]

[tex]x=\dfrac{36+1}{6}-\dfrac{12+3}{4}[/tex]

[tex]x=\dfrac{37}{6}-\dfrac{15}{4}[/tex]

When subtracting fractions, we must ensure that they have the same denominator.  To do this, find the least common multiple (LCM) of the two denominators.

As 6 and 4 are factors of 12, then 12 is the LCM.

Rewrite the fractions as their equivalent fractions (with a denominator of 12) by multiplying the numerator and denominator by the same number.

[tex]x=\dfrac{37\times 2}{6\times 2}-\dfrac{15\times3}{4\times3}[/tex]

[tex]x=\dfrac{74}{12}-\dfrac{45}{12}[/tex]

Now the fractions all have the same denominator, we can simply subtract the numerators:

[tex]x=\dfrac{74-45}{12}[/tex]

[tex]x=\dfrac{29}{12}[/tex]

Finally, convert the improper fraction into a mixed number:

[tex]x=\dfrac{24+5}{12}[/tex]

[tex]x=\dfrac{24}{12}+\dfrac{5}{12}[/tex]

[tex]x=2+\dfrac{5}{12}[/tex]

[tex]x=2\frac{5}{12}[/tex]

Mai is jogging from her house to school. Her school is 2 5/6 miles from her house. She has gone 1 3/5 miles so far. How many miles does Mai still have to jog? Write your answer as a mixed number in simplest form.

Answers

Step-by-step explanation:

[tex]2 \times \frac{5}{6} = \frac{17}{6} [/tex]

[tex]1 \times \frac{3}{5} = \frac{8}{5} [/tex]

[tex] \frac{17}{6} - \frac{8}{5} [/tex]

[tex] \frac{17}{6} \times 5 = \frac{85}{30} [/tex]

[tex] \frac{8}{5} \times 6 = \frac{48}{30} [/tex]

[tex] \frac{85}{30} - \frac{48}{30} = \frac{37}{30} [/tex]

[tex]37 \div 30 = 7 \times \frac{1}{30} [/tex]

so 7 1/30

An incoming freshman took her college’s placement exams in French and mathematics. In French, she scored 92 and in math 80. The overall results on the French exam had a mean of 72 and a standard deviation of 17, while the mean math score was 70, with a standard deviation of 8. What are the z-scores for the two subjects?

A. -1.18, and 1.25

B. 1.18, and -1.25

C. 8, and 17

D. 1.18, and 1.25

Answers

The z-scores of the two subjects are 1.18, and 1.25 respectively

Given data ,

The z-score is a measure of how many standard deviations a data point is away from the mean of a data set.

z = (X - μ) / σ

where X is the data point, μ is the mean, and σ is the standard deviation.

For the French exam:

X = 92 (score obtained by the student)

μ = 72 (mean of the French exam)

σ = 17 (standard deviation of the French exam)

On simplifying , we get

z_french = (92 - 72) / 17 = 1.18

For the math exam:

X = 80 (score obtained by the student)

μ = 70 (mean of the math exam)

σ = 8 (standard deviation of the math exam)

z_math = (80 - 70) / 8 = 1.25

Hence , the z-scores are calculated

To learn more about z-score click :

https://brainly.com/question/15016913

#SPJ1

5. a. A box contains 20 pens of which m are red. If 5 more pens of which 3 are red are added, the probability of selecting two red pens at random without replacement is 7/20 Find the value of m. b. The first four consecutive terms of a linear sequence are x,y, (2x + 1), (2y-3). i. Show that S4= 3(x+y) - 2. ii. Find the fifth term, U5​

Answers

a. There are 4 red pens in the box.

b i. Simplifying, we get:

S₄ = 3(x + y) - 2

ii. The fifth term is 4y - 2x + 1.

What is probability?

The chance of an event occurring is called the probability of the event happening. It tells us how likely it is for an event to happen; it does not tell us what is going to happen. There is an even chance of an event happening (happen/not happen).

a. Let the number of non-red pens be n, then we have m + n = 20. Also, after adding 5 more pens, we have m + 3 red pens and n + 2 non-red pens. The probability of selecting two red pens at random without replacement from these 25 pens is given by:

(m + 3)/(20 + 5) * (m + 2)/(20 + 4) = 7/20

Simplifying this equation, we get:

(m + 3)(m + 2) = 14 * 5

Expanding the left side and simplifying, we get:

m² + 5m - 36 = 0

Factoring this equation, we get:

(m + 9)(m - 4) = 0

Since m cannot be negative, we have:

m = 4

Therefore, there are 4 red pens in the box.

b. i. The sum of the first n terms of an arithmetic sequence can be given by:

Sₙ = n/2[2a + (n - 1)d]

where a is the first term, d is the common difference, and n is the number of terms. Using this formula, we can find S₄ as follows:

S₄ = 4/2[x + y + (2x + 1) + (2y - 3)]

= 2(3x + 3y - 1)

= 6(x + y) - 6 - 2

Simplifying, we get:

S₄ = 3(x + y) - 2

ii. The common difference of the sequence is given by:

d = y - x

Therefore, the fifth term can be expressed as:

U₅ = (2x + 1) + 4d

= (2x + 1) + 4(y - x)

= 4y - 2x + 1

Therefore, the fifth term is 4y - 2x + 1.

Learn more about probability on:

https://brainly.com/question/13604758

#SPJ9

a. There are 4 red pens in the box.

b i. Simplifying, we get:

S₄ = 3(x + y) - 2

ii. The fifth term is 4y - 2x + 1.

What is probability?

The chance of an event occurring is called the probability of the event happening. It tells us how likely it is for an event to happen; it does not tell us what is going to happen. There is an even chance of an event happening (happen/not happen).

a. Let the number of non-red pens be n, then we have m + n = 20. Also, after adding 5 more pens, we have m + 3 red pens and n + 2 non-red pens. The probability of selecting two red pens at random without replacement from these 25 pens is given by:

(m + 3)/(20 + 5) * (m + 2)/(20 + 4) = 7/20

Simplifying this equation, we get:

(m + 3)(m + 2) = 14 * 5

Expanding the left side and simplifying, we get:

m² + 5m - 36 = 0

Factoring this equation, we get:

(m + 9)(m - 4) = 0

Since m cannot be negative, we have:

m = 4

Therefore, there are 4 red pens in the box.

b. i. The sum of the first n terms of an arithmetic sequence can be given by:

Sₙ = n/2[2a + (n - 1)d]

where a is the first term, d is the common difference, and n is the number of terms. Using this formula, we can find S₄ as follows:

S₄ = 4/2[x + y + (2x + 1) + (2y - 3)]

= 2(3x + 3y - 1)

= 6(x + y) - 6 - 2

Simplifying, we get:

S₄ = 3(x + y) - 2

ii. The common difference of the sequence is given by:

d = y - x

Therefore, the fifth term can be expressed as:

U₅ = (2x + 1) + 4d

= (2x + 1) + 4(y - x)

= 4y - 2x + 1

Therefore, the fifth term is 4y - 2x + 1.

Learn more about probability on:

https://brainly.com/question/13604758

#SPJ9

What is mHI?
mHI
I
=
H
O
120°
120°
J

Answers

The calculated value of the measure of the arc HI is 55 degrees

Calculating the measure of the arc HI

From the question, we have the following parameters that can be used in our computation:

The circle

The sum of angles at a point is 360

So, we have

∠HAI + 60 + 100 + 145 = 360

When the like terms are evaluated, we have

∠HAI = 55

The angle subtended by the arc equals the angle at the center

This means that

mHI = ∠HAI

By substitution, we have

mHI = 55 degrees

Hence, the arc HI is 55 degrees

Read more about angles at

https://brainly.com/question/25215131

#SPJ1

Please help me im struggling with my test

Answers

The y-intercept is (0, 10) and the values of x that make sense are x > 0

The graph of the function

From the question, we have the following parameters that can be used in our computation:

y = 10(2)^x

The graph is added as an attachment

The y-intercept

This is the point of intersection with the y-axis

From the graph, it is (0, 10)

The values of x that make sense

These are the values whose corresponding y values are not negative

In other words, the values are x > 0

Read more about exponential function at

https://brainly.com/question/2456547

#SPJ1

Please help me figure this out, im not sure how i should be doing this

Answers

The table for the population of the colony at the different times of the study is found.

Explain about the exponential function:

Calculating the exponential growth as well as decay of a given collection of data is done using an exponential function, which is a mathematical function. Exponential functions, for illustration, can be used to estimate population changes, loan interest rates, bacterial growth, radioactive decay, as well as disease spread.

Given functions are-

P(t) = 9.[tex](1.02)^{t}[/tex]

Q(t) = 9.[tex]e^{0.02t}[/tex]

Population is estimated in thousands.

Table for the population of the colony:

t (time in months)     P(t) = 9.[tex](1.02)^{t}[/tex]                   Q(t) = 9.[tex]e^{0.02t}[/tex]

6                            P(6) = 9.[tex](1.02)^{6}[/tex] = 10.13         Q(t) = 9.[tex]e^{0.02*6}[/tex]= 10.14

12                          P(12) = 9.[tex](1.02)^{12}[/tex] = 11.41        Q(t) = 9.[tex]e^{0.02*12}[/tex] = 11.44

24                        P(24) = 9.[tex](1.02)^{24}[/tex] = 38.60     Q(t) = 9.[tex]e^{0.02*24}[/tex] = 14.54        

48                        P(48) = 9.[tex](1.02)^{48}[/tex]= 23.28      Q(t) = 9.[tex]e^{0.02*48}[/tex]= 23.50

100                    P(100) = 9.[tex](1.02)^{100}[/tex] = 65.20     Q(t) = 9.[tex]e^{0.02*100}[/tex]= 66.50

Thus, the table for the population of the colony at the different times of the study is found.

Know more about the exponential function:

https://brainly.com/question/2456547

#SPJ1

In January, the amount of snowfall was 5 2/3 feet. In February, the amount of snowfall was 3 1/5 feet. What was the amount of snowfall in the two months combined? Write your answer as a mixed number in simplest form.

Answers

Answer:

Step-by-step explanation:

To add these fractions, we need a common denominator. The smallest common multiple of 3 and 5 is 15.

Converting 2/3 to fifteenths:

2/3 = 10/15

Converting 1/5 to fifteenths:

1/5 = 3/15

Now, we can add:

5 10/15 + 3 3/15 = 8 13/15

Therefore, the amount of snowfall in the two months combined was 8 13/15 feet.

The answer is 8 13/15 so yeah hope this helps a lot

3
Please help
Question in image

Answers

Answer:

  A.  12

Step-by-step explanation:

You want to know the length of tangent PQ, given that secant QS has segments QR = 8 and RS = 10. Points P, R, and S are on the circle. Point Q is external to the circle.

Secant relation

The relevant relation is ...

  PQ² = QR·QS

  x² = (8)(8+10) = 144

  x = √144 = 12

The value of x is 12.

<95141404393>

Compound interest on a certain sum of money for 2 years is Rs.2600 while the simple interest on the same sum for the same time period is Rs.2500. Find the rate of interest.


13.5%


15%


12.8%


8%

Answers

The rate of interest according to the given data is 12.8%.

To answer this problem, we may utilize the compound interest formula:

A = P(1 + r/n)^(nt)

where A denotes the ultimate amount, P the principle, r the yearly interest rate, n the number of times the interest is compounded each year, and t the period in years.

We know that the compound interest on a certain payment over two years is Rs. 2600. Let us refer to the principal as P. Then we may type:

2600 = P(1 + r/100)^2 - P

When we simplify this equation, we get:

2600 = P[(1 + r/100)^2 - 1]

Dividing both sides by P[(1 + r/100)^2 - 1], we get:

1 = 1/[(1 + r/100)^2 - 1]

Simplifying even further, we get:

1 + (1 + r/100)^2 - 1 = (1 + r/100)^2

Taking the square root of both sides yields:

1 + r/100 = 1 + sqrt(2600/2500)

1 + r/100 = 1 + 0.04

r/100 = 0.04

r = 4%

As a result, the yearly interest rate is 4%. This, however, is the basic interest rate. To get the compound interest rate, use the following formula:

CI = P(1 + r/100)^2 - P

2500 = P(1 + 4/100)^2 - P

Simplifying this equation, we get:

2500 = P(1.04^2 - 1)

2500 = P(0.0816)

P = 30637.25

So the principal is Rs. 30637.25, and the annual compound interest rate is:

r = 100[(30637.25/10000)^(1/2) - 1]

r = 12.8%

Therefore, the rate of interest is 12.8% (rounded off to one decimal place).

Learn more about the Interest rates:

https://brainly.com/question/29451175

Find the vertex and the axis of symmetry of the parabola given by the equation.
y = −x2 + 16x − 65

Answers

The axis of symmetry of the parabola is 8.

The vertex of the parabola is (8, -1).

How to find the vertex and the axis of symmetry of a parabola?

The vertex of a parabola in standard form, y = ax² + bx + c, is given by:

Vertex, (h, k) = (-b/2a, c - b²/4a)

For y = -x² + 16x − 65:

a = -1, b = 16 and c = -65

-b/2a = -16/2(-1)

-b/2a = 8

c - b²/4a = -65 -  (16)²/4(-1)

c - b²/4a = -65 + 64

c - b²/4a = -1

Vertex, (h, k) = (8, -1)

For a parabola in standard form, y = ax² + bx + c, the axis of symmetry of the parabola is given by:

x = -b/2a

For y = -x² + 16x − 65:

a = -1 and b = 16

Thus, the axis of symmetry of the parabola is:

x =  -16/2(-1)

x = 8

Learn more about parabola on:

https://brainly.com/question/29635857

#SPJ1

what is the equation that represents the linear function f for the points (1,2) and (4,1)

Answers

Answer: f(x)= -0.333x + 2,333

Circle O shown below has a radius of 8 inches. To the nearest tenth of an inch, determine the length of the arc, x, subtended by an angle of 74 .

Answers

The length of the arc, x, subtended by an angle of 74° in a circle with a radius of 8 inches is approximately 13.1 inches.

What is the central angle?

A central angle is an angle with endpoints located on a circle's circumference and a vertex located at the circle's center (Rhoad et al. 1984, p. 420). A central angle in a circle determines an arc.

The length of an arc, x, subtended by an angle of 74° in a circle with a radius of 8 inches can be found using the formula:

x = (θ/360) × 2πr

where θ is the central angle in degrees, r is the radius of the circle, and π is the mathematical constant pi.

Substituting the given values, we get:

x = (74/360) × 2π(8)

x ≈ 4.17π

To get the value to the nearest tenth of an inch, we can use the approximation π ≈ 3.14:

x ≈ 4.17 × 3.14

x ≈ 13.1

Therefore, the length of the arc, x, subtended by an angle of 74° in a circle with a radius of 8 inches is approximately 13.1 inches.

To know more about central angles visit :

https://brainly.com/question/15698342

#SPJ1

A net of a square pyramid is shown below.
What is the surface area, in square centimeters, of the pyramid?

Answers

Answer:

Option (B) 86.7 is the correct answer.

Step-by-step explanation :

Dividing the given diagram in 5 parts :

Firstly finding the area of one right angle triangle :

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{1}{2} \times b \times h}[/tex]

↠ b (base) = 5.1 cm↠ h (height) = 5.95 cm

substituting all the given values in the formula :

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{1}{2} \times 5.1 \times 5.95}[/tex]

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{1 \times 5.1 \times 5.95}{2}}[/tex]

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{5.1 \times 5.95}{2}}[/tex]

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{30.345}{2}}[/tex]

[tex]\dashrightarrow\sf{Area_{(\triangle)} = 15.1725\: {cm}^{2}}[/tex]

Hence, the area of right angle triangle is 15.1725 cm².

[tex]\begin{gathered} \end{gathered}[/tex]

Here we have 4 right angle triangle with equal base and height and we have already find the area of one right angle triangle. So, the area of 4 triangle will be :

[tex]\dashrightarrow\sf{Area_{(\triangle)} = 15.1725 \: {cm}^{2}}[/tex]

[tex]\dashrightarrow\sf{Area \: of \: 4{(\triangle)} = 15.1725 \times 4}[/tex]

[tex]\dashrightarrow\sf{Area \: of \: 4{(\triangle)} = 60.69 \: {cm}^{2}}[/tex]

Hence, the area of 4 right angle triangles is 60.69 cm².

[tex]\begin{gathered} \end{gathered}[/tex]

Now, we have to find the area of square

[tex]\longrightarrow\sf{Area_{(Square)} = {a}^{2}}[/tex]

↠ a (side) = 5.1 cm

Substituting the given value in the formula :

[tex]\longrightarrow\sf{Area_{(Square)} = {(5.1)}^{2}}[/tex]

[tex]\longrightarrow\sf{Area_{(Square)} = {(5.1 \times 5.1)}}[/tex]

[tex]\longrightarrow\sf{Area_{(Square)} = 26.01 \: {cm}^{2}}[/tex]

Hence, the area of square is 26.01 cm².

[tex]\begin{gathered} \end{gathered}[/tex]

Now, calculating the total area :

[tex]{\sf{\implies{Total \: Area = Area_{(\triangle)} + Area_{(Square)}}}}[/tex]

↠ Area of triangle = 60.69 cm²↠ Area of square = 26.01 cm².

[tex]{\sf{\implies{Total \: Area = 60.69 + 26.01}}}[/tex]

[tex]{\sf{\implies{Total \: Area = 86.7 \: {cm}^{2}}}}[/tex]

Hence, the total area of given diagram is 86.7 cm².

———————————————

Answer:

Option (B) 86.7 is the correct answer.

Step-by-step explanation :

Dividing the given diagram in 5 parts :

Firstly finding the area of one right angle triangle :

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{1}{2} \times b \times h}[/tex]

↠ b (base) = 5.1 cm↠ h (height) = 5.95 cm

substituting all the given values in the formula :

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{1}{2} \times 5.1 \times 5.95}[/tex]

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{1 \times 5.1 \times 5.95}{2}}[/tex]

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{5.1 \times 5.95}{2}}[/tex]

[tex]\dashrightarrow\sf{Area_{(\triangle)} = \dfrac{30.345}{2}}[/tex]

[tex]\dashrightarrow\sf{Area_{(\triangle)} = 15.1725\: {cm}^{2}}[/tex]

Hence, the area of right angle triangle is 15.1725 cm².

[tex]\begin{gathered} \end{gathered}[/tex]

Here we have 4 right angle triangle with equal base and height and we have already find the area of one right angle triangle. So, the area of 4 triangle will be :

[tex]\dashrightarrow\sf{Area_{(\triangle)} = 15.1725 \: {cm}^{2}}[/tex]

[tex]\dashrightarrow\sf{Area \: of \: 4{(\triangle)} = 15.1725 \times 4}[/tex]

[tex]\dashrightarrow\sf{Area \: of \: 4{(\triangle)} = 60.69 \: {cm}^{2}}[/tex]

Hence, the area of 4 right angle triangles is 60.69 cm².

[tex]\begin{gathered} \end{gathered}[/tex]

Now, we have to find the area of square

[tex]\longrightarrow\sf{Area_{(Square)} = {a}^{2}}[/tex]

↠ a (side) = 5.1 cm

Substituting the given value in the formula :

[tex]\longrightarrow\sf{Area_{(Square)} = {(5.1)}^{2}}[/tex]

[tex]\longrightarrow\sf{Area_{(Square)} = {(5.1 \times 5.1)}}[/tex]

[tex]\longrightarrow\sf{Area_{(Square)} = 26.01 \: {cm}^{2}}[/tex]

Hence, the area of square is 26.01 cm².

[tex]\begin{gathered} \end{gathered}[/tex]

Now, calculating the total area :

[tex]{\sf{\implies{Total \: Area = Area_{(\triangle)} + Area_{(Square)}}}}[/tex]

↠ Area of triangle = 60.69 cm²↠ Area of square = 26.01 cm².

[tex]{\sf{\implies{Total \: Area = 60.69 + 26.01}}}[/tex]

[tex]{\sf{\implies{Total \: Area = 86.7 \: {cm}^{2}}}}[/tex]

Hence, the total area of given diagram is 86.7 cm².

———————————————

Will mark brainiest for good and real answers only!
Vector C is 3.5 units West and Vector D is 3.3 units South. Vector R is equal to Vector D - Vector C. Which of the following describes Vector R?


8.3 units 54
South of East
8.3 units 54circ South of East

4.8 units 47
East of South
4.8 units 47circ East of South

6.2 units 32
West of South
6.2 units 32circ West of South

5.9 units 52
South of West

Answers

The corresponding to Vector R is 4.8 units 47 East of South 4.8 units 47circ East of South

How to solve for the vector

Vector C comprises a magnitude of -3.5i

Vector D is established as –3.3j (South bearing is thought to be negative along the y-axis).

Vector R = Vector D - Vector C

= (-3.3j) - (-3.5i)

= 3.5i - 3.3j

To evaluate the strength of Vector R, we must first compute its magnitude:

Magnitude of R = √((3.5)^2 + (-3.3)^2) ≈ 4.8 units.

determine the direction,

we shall need to calculate the angle θ with respect to the South direction (the negative y-axis):

tan(θ) = (3.5) / (3.3);

θ = arctan(3.5 / 3.3) ≈ 47°

Hence the answer is option 2

Read more on vector here:https://brainly.com/question/25705666

#SPJ1

PLS HELP!! suppose a scatterplot is created from the points in the following table. when x=7, what is the second coordinate in a scatterplot of the linearized data? round the answer to the tenth place.
a. 0.8
b. 2.1
c. 54.3
d. 112.8

Answers

Answer:

D

Step-by-step explanation:

i think its D because next to x the y coordinate is 112.8


Terry bought a new television set for $450. She paid nothing down but agreed to payments of $40.03 per month for 12 months. Find the annual percentage rate for the loan using the APR table

The annual percentage rate is%

Answers

The annual percentage rate for Terry's loan is 19.21%.

What is statistics?

Statistics is a branch of mathematics that deals with the collection, analysis, interpretation, presentation, and organization of numerical data.

To find the annual percentage rate (APR) for Terry's loan, we can use the following formula:

APR = (2 × Monthly Payment ÷ Loan Amount) × (12 ÷ Loan Term in Months + 1)

First, we need to calculate the total amount Terry will pay for the TV over the 12-month period:

Total payments = Monthly payment × Loan term in months

Total payments = $40.03 × 12

Total payments = $480.36

Next, we can use the formula to calculate the APR:

APR = (2 × $40.03 ÷ $450) × (12 ÷ 12 + 1)

APR = (0.1774) × (1.0833)

APR = 0.1921 or 19.21%

Therefore, the annual percentage rate for Terry's loan is 19.21%.

To learn more about statistics from the given link:

https://brainly.com/question/28053564

#SPJ1

C =5/9 × (F – 32) What is the answer

Answers

Answer:

c

=

5

9

(

f

32

)

Rewrite the equation as

5

9

(

f

32

)

=

c

.

5

9

(

f

32

)

=

c

Multiply both sides of the equation by

9

5

.

9

5

(

5

9

(

f

32

)

)

=

9

5

c

Simplify both sides of the equation.

Tap for more steps...

f

32

=

9

c

5

Add

32

to both sides of the equation.

f

=

9

c

5

+

32

2.4.4 Quiz: Parabolas with Vertices Not at the Origin
The vertex of this parabola is at (2, -4). When the y-value is -3, the x-value is
-3. What is the coefficient of the squared term in the parabola's equation?
10
-10
OA. -1
B. 1
10-
C. 5
OD. -5
(2,-4)
10

Answers

Since the vertex of the parabola is at (2, -4), we know that the equation of the parabola must have the form:

y = a(x - 2)^2 - 4

where a is the coefficient of the squared term.

To find the value of a, we need to use the fact that when y = -3, x = -3. Substituting these values into the equation, we get:

-3 = a(-3 - 2)^2 - 4

Simplifying the expression, we get:

-3 = 25a - 4

Solving for a, we get:

a = -1/5

Therefore, the coefficient of the squared term in the parabola's equation is -1. So it’s A

Which data set has the largest standard deviation

Answers

The biggest standard deviation belongs to B. 1,6,3,15,4,12,8. This is due to the fact that this data set's range of values is substantially wider than that of the other sets, which raises the standard deviation.

what does standard deviation mean?

In statistics, standard deviation is a measure of the amount of variability or dispersion in a set of data. It measures how spread out the data is from the mean or average value.

The standard deviation serves as a gauge for how widely dispersed from the mean a set of data is. It is calculated by averaging the squared deviations from the mean, or variance, which is the variance expressed as a square root. In statistics and probability theory, the standard deviation is frequently used to quantify the variability of a data collection. It is crucial to understand that standard deviation differs from a data set's range, which is only the difference between greatest and lowest values.

Because standard deviation accounts for all of the data points in the set, it is a more accurate statistic.

To  know more about standard deviation visit:

https://brainly.com/question/475676

#SPJ1

Complete Question:

Which data set has the largest standard deviation

A.3,4,3,4,3,4,3

B.1,6,3,15,4,12,8

C. 20, 21,23,19,19,20,20

D.12,14,13,14,12,13,12

ILL GIVE U BRAINLIST OR WHATEVER

The nationwide percentage of Americans who invest in the stock market is usually taken to be 55%. Is this percentage different in Georgia? A survey and analysis among Georgia residents led to a test statistic of 1.75.

(b) What is the p-value to test if the proportion of Georgians who invest in the stock market is different than the nationwide average? (Use 4 decimals.)

Answers

Okay, here are the steps to find the p-value:

1) The nationwide proportion of Americans who invest in the stock market is 55% (0.55)

2) The test statistic for Georgia is 1.75

3) To calculate the p-value, we need to know the degrees of freedom (df) and the critical value of the test statistic.

4) The df = 1, since we're comparing a single proportion (Georgia) to a fixed value (national average).

5) The critical value at df = 1 and 95% confidence is 3.84 (for a two-tailed test)

6) Since the test statistic of 1.75 is less than 3.84, we look up 1.75 in tables to find the p-value.

7) For a test statistic of 1.75 and df = 1, the p-value is 0.1860.

So the p-value to test if the proportion of Georgians who invest in the stock market is different than the nationwide average is 0.1860.

Let me know if you have any other questions!

Okay, here are the steps to find the p-value:

1) The nationwide proportion of Americans who invest in the stock market is 55% (0.55)

2) The test statistic for Georgia is 1.75

3) To calculate the p-value, we need to know the degrees of freedom (df) and the critical value of the test statistic.

4) The df = 1, since we're comparing a single proportion (Georgia) to a fixed value (national average).

5) The critical value at df = 1 and 95% confidence is 3.84 (for a two-tailed test)

6) Since the test statistic of 1.75 is less than 3.84, we look up 1.75 in tables to find the p-value.

7) For a test statistic of 1.75 and df = 1, the p-value is 0.1860.

So the p-value to test if the proportion of Georgians who invest in the stock market is different than the nationwide average is 0.1860.

Let me know if you have any other questions!

Let ABC be any triangle .D is the midpoint of [BC]
1) Locate the points M, N and I such that :
MA+MB = 0
3NA+NC = 0
IM +2IN = 0

Answers

Answer:

We can use vectors to solve this problem. Let's assume that the position vector of point A is a, and the position vectors of points B and C are b and c respectively.

Since D is the midpoint of BC, we can find its position vector as:

d = (b + c)/2

Now, let's find the position vectors of M, N, and I using the given conditions:

MA + MB = 0

This means that the vector MA is equal in magnitude and opposite in direction to the vector MB. Since M is a point on the line segment AB, we can write:

MA = M - a

MB = M - b

So, MA + MB = 0 gives us:

M - a + M - b = 0

2M = a + b

M = (a + b)/2

Therefore, the position vector of M is:

m = (a + b)/2

Similarly, we can find the position vectors of N and I:

3NA + NC = 0

This means that the vector NA is three times the magnitude of the vector NC, and they are in opposite directions. Since N is a point on the line segment AC, we can write:

NA = N - a

NC = N - c

So, 3NA + NC = 0 gives us:

3(N - a) + (N - c) = 0

4N = 3a + c

N = (3a + c)/4

Therefore, the position vector of N is:

n = (3a + c)/4

IM + 2IN = 0

This means that the vector IM is twice the magnitude of the vector IN, and they are in opposite directions. Since I is a point on the line segment DM, we can write:

IM = I - m

IN = I - n

So, IM + 2IN = 0 gives us:

I - m + 2(I - n) = 0

3I = 2m + 2n

I = (2m + 2n)/3

Therefore, the position vector of I is:

i = (2m + 2n)/3

So, the points M, N, and I are located at:

M = (a + b)/2

N = (3a + c)/4

I = (2m + 2n)/3

where:

m = (a + b)/2

n = (3a + c)/4

If 600 bolts were already examined and 12 were defective, determine the probability that next bolt found would be nondefective.​

Answers

The probability that the next bolt found would be non-defective is 0.98 or 98%.

What is Probability Theory?

A fundamental idea in mathematics and statistics, probability theory has several uses in the sciences, engineering, business, and social sciences. It is used to assess risks and uncertainties in diverse circumstances, analyse and forecast the possibility of events happening, and make decisions in the face of uncertainty.

Given:

Number of bolts already examined = 600

Number of defective bolts found = 12

Number of non-defective bolts = Total number of bolts examined - Number of defective bolts

= 600 - 12

= 588

Probability of finding a non-defective bolt = Number of non-defective bolts / Total number of bolts

= 588 / 600

= 0.98 or 98%

Learn more about Probability Theory here:

https://brainly.com/question/30653447

#SPJ1

Juan catches 80% of the passes thrown to him in football. If the quarterback throws to him 15 times during a game, what is the probability he will catch atleast 10 of them?

Answers

the probability that Juan will catch at least 10 passes out of 15 is approximately 0.9951, or about 99.51%.

We may utilise the binomial distribution formula to resolve this issue:

P(X ≥ 10) = 1 - P(X < 10)

where P(X 10) is the likelihood that Juan catches fewer than 10 passes and X is the total number of passes he catches.

By applying the binomial distribution formula, we may determine P(X 10):

P(X < 10) = Σ(k=0 to 9) [(15 select k)×(0.8)k×(0.2)×(15-k)]

where (15 select k) is the binomial coefficient and (0.8)k×(0.2)(15-k) is the probability of catching k passes and missing (15-k) passes, and (15 choose k) is the number of possibilities to choose k items out of 15.

P(X 10) can be calculated using a calculator or a spreadsheet and is roughly equal to 0.0049.

P(X 10) is therefore equal to 1 - P(X 10) 1 - 0.0049 0.9951.

So the probability that Juan will catch at least 10 passes out of 15 is approximately 0.9951, or about 99.51%.

learn more about Probability here:

https://brainly.com/question/30034780

1/x is undefined for which real numbers?

Answers

Answer:

0

Step-by-step explanation:

Other Questions
a block is dropped from the top of a 450-foot platform. what is its velocity after 2 seconds? after 5 seconds? Help!! Help me find poetic elements in this poem please.Poem: citizenship by Javier Zamora what is the molar volume of co2 gas under the conditions of temperature and pressure where its density is 1.50 g/l? Identify the outside-the-body factor that contributes to obesity. a.Inherited familial genes b.Access to many supermarkets c.Prolonged physical inactivity d.Neighborhoods with public parks e.Reduced screen time Compare and contrast the welfarist approach to African ethics and the vitality approach to African ethics. Do you agree with the assertion that the vitality approach to African ethics provides a better understanding of the basic property of morally right actions? Show reasons for your answer.Your answer should be in the form of an essay. It should have a well written introduction, body and conclusion. What is the best explanation for how we see a book? PLEASE HELP WILL GIVE BRAINLEST FOR CORRECT ANSWER ONLY !!(Enlarge photo) draw the structure of each of the following compounds: (a) 1,4-cyclohexadiene (b) 1,3-cyclohexadiene (c) (z)-1,3-pentadiene (d) (2z,4e)-hepta-2,4-diene (e) 2,3-dimethyl-1,3-butadiene \Status: Not yet answered | Points possible: 2.00 Microscale reactions involve reaction mixtures with volumes Choose... less than 5 mL Some benefits of microscale chemistry are (select all that ap %0%less than 1 mL Greater amount of product more than 5 mL more than 10 mL Fewer pieces of glassware Reduced chemical waste Faster work-ups Find the measures of angle BED A votre avis pourquoi Moliere a t il appele son personnage ainsi ? Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.If f(x)g(x) and [infinity]0g(x) dx diverges, then [infinity]0f(x) dx also diverges. 1.What is a recent invention that has influenced culture and leisure in the US? for one-dimensional, transient conduction, what is implied by the idealization of a semi- innfi ite solid? A survey of the wine market has shown that the preferred wine for 17 percent of Americans is merlot.A wine producer in California, where merlot is produced, believes the figure is higher in California. Shecontacts a random sample of 550 California residents and asks which wine they purchase most often.Suppose 115 replied that merlot was the primary wine.(a) Calculate the appropriate test statistic to test the hypotheses.(b) Calculate the p-value associated with the test statistic, and test the claim at = 0.01. help finding coordinates Is (-10,10) a solution for the inequality yx+7 consider the following geometric series. [infinity] (3)n 1 7n n = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.) how does the US involvement in international conflicts and organizations impact its domestic policy Omar (single) is a 50 percent owner in Cougar LLC (taxed as a partnership). Omar works half time for Cougar and receives guaranteed payment of $50,000. Cougar LLC reported $450,000 of business income for the year (2022). Before considering his 50 percent business income allocation from Cougar and the self-employment tax deduction (if any), Omar's adjusted gross income is $210,000 (includes $50,000 guaranteed payment from Cougar and $160,000 salary from a different employer). Omar reports itemized deductions of $40,000. Answer the following questions for Omar.Note: Leave no answer blank. Enter zero if applicable. Round your intermediate calculations and final answers to the nearest whole dollar.b. What would be Omar's self-employment tax liability if he didn't receive any salary.Sandra would like to organize LAB (a legal corporation) as either an S corporation or a C corporation for tax purposes. In either form, the entity is expected to generate an 8 percent annual before-tax return on a $875,000 investment. Sandra's marginal income tax rate is 37 percent and her tax rate on qualified dividends and net capital gains is 20 percent. LAB's income is not qualified business income (QBI), so Sandra is not allowed to claim the QBI deduction. Assume that LAB will distribute all of its earnings after entity-level taxes every year. Ignore the additional Medicare tax and the net investment income tax when computing your answers.Note: Round your intermediate computations to the nearest whole dollar amount.a. How much cash after taxes would Sandra receive from her investment in the first year if LAB is organized as either an S corporation or a C corporation?Sandra would like to organize LAB (a legal corporation) as either an S corporation or a C corporation for tax purposes. In either form, the entity is expected to generate an 8 percent annual before-tax return on a $875,000 investment. Sandra's marginal income tax rate is 37 percent and her tax rate on qualified dividends and net capital gains is 20 percent. LAB's income is not qualified business income (QBI), so Sandra is not allowed to claim the QBI deduction. Assume that LAB will distribute all of its earnings after entity-level taxes every year. Ignore the additional Medicare tax and the net investment income tax when computing your answers.Note: Round your intermediate computations to the nearest whole dollar amount.b. What is the overall tax rate on LAB's income in the first year if LAB is organized as an S corporation or as a C corporation?Note: Round your final answers to 2 decimal places.Willow Corporation (a calendar-year C corporation) reported taxable income before the net operating loss deduction (NOL) in the amount of $100,000 in 2022. Willow had an NOL carryover of $90,000 to 2022. How much tax will Willow Corporation pay in 2022, what is its NOL carryover to 2023, and when will the NOL expire under the following assumptions?Note: Leave no answer blank. Enter zero if applicable.b. $40,000 of the NOL was generated in 2016 and $50,000 was generated in 2021.