The approximate original size of the amoeba population which is about 33.33 the closest answer choice is (B) 33.
How we get original size of the amoeba population?We can use the formula for exponential growth to set up two equations using the information given:N(2) = [tex]N_0 * e^(^k^2^) = 100[/tex]
N(4) = [tex]N_0 * e^(^k^4^) = 300[/tex]
Dividing the second equation by the first, we get:
N(4) / N(2) = [tex]e^(^k^4^) / e^(^k^2^) = e^(^k^*^2^)[/tex]
Taking the natural logarithm of both sides, we have:
[tex]ln(N(4) / N(2)) = k*2[/tex]
Therefore, we can solve for k:
k = ln(N(4) / N(2)) / 2 = ln(300/100) / 2 = ln(3) / 2
Now that we know k, we can use the equation N_0 = [tex]N(2) / e^(^k^*^2^)[/tex] to find the approximate original size of the amoeba population:N_0 = [tex]N(2) / e^(^k^*^2^) = 100 / e^(^l^n^(^3^)^/^2^ * ^2^) = 100 / e^l^n^(^3^) = 100 / 3[/tex]
Therefore, the approximate original size of the amoeba population is 100/3, which is about 33.33. The closest answer choice is (B) 33, so that is our answer.
In step 1, we set up two equations using the formula for exponential growth and the information given about the amoeba population. We then used these equations to solve for the value of k, which represents the rate of growth.
In step 2, we used the value of k to find the approximate original size of the amoeba population using the equation for exponential growth with time t=2.
We found that the approximate original size of the amoeba population is 100/3, which is about 33.33.
Learn more about Exponential growth
brainly.com/question/11487261
#SPJ11
find the given higher-order derivative. f (3)(x) = 5 x4 , f (4)(x)
Answer:
4th Order Derivative: 120
Step by sep solution:
To find the fourth-order derivative of the function f(x) = 5x^4, we can differentiate the third-order derivative f(3)(x) = d^3/dx^3 (5x^4) with respect to x:
f(3)(x) = d^3/dx^3 (5x^4) = 5 * d^3/dx^3 (x^4)
To find d^3/dx^3 (x^4), we differentiate the function x^4 three times:
d/dx (x^4) = 4x^3
d^2/dx^2 (x^4) = d/dx (4x^3) = 12x^2
d^3/dx^3 (x^4) = d/dx (12x^2) = 24x
Substituting this back into the expression for the third-order derivative, we get:
f(3)(x) = 5 * d^3/dx^3 (x^4) = 5 * 24x = 120x
Now we can differentiate f(3)(x) = 120x to find the fourth-order derivative:
f(4)(x) = d^4/dx^4 (f(x)) = d/dx (f(3)(x)) = d/dx (120x) = 120
Therefore, the fourth-order derivative of the function f(x) = 5x^4 is f(4)(x) = 120
Approximate the sum of the series correct to four decimal places. (-1)^n-1 n^2/10^n
The sum of the series is 0.0901.
The formula for the sum of an infinite geometric series is:
S = a/(1-r)
where S is the sum of the series, a is the first term = 1/10, and r is the common ratio = -1/10
So,
S = (1/10)/(1-(-1/10)) = (1/10)/(11/10) = 1/11
To approximate the sum correct to four decimal places, we need to evaluate the series up to a certain number of terms that gives us an error of less than 0.00005. To do this, use the formula for error of an alternating series:
|E| <= |a_n+1|, where a_n+1 is the first neglected term
In this case:
a_n+1 = (-1)^n+1 (n+1)^2/10^(n+1)
To find the number of terms, we can use the inequality:
|a_n+1| < 0.00005
Solving for n gives:
(-1)^n+1 (n+1)^2/10^(n+1) < 0.00005
Taking the logarithm of both sides and simplifying gives:
n > 5.623
So we need to evaluate the series up to n=6 to get an error of less than 0.00005. Evaluating the series up to n=6 gives:
S = 1/10 - 4/100 + 9/1000 - 16/10000 + 25/100000 - 36/1000000 + 49/10000000
S = 0.090123
Therefore, the sum of the series correct to four decimal places is approximately 0.0901.
Know more about series here:
https://brainly.com/question/28163163
#SPJ11
as the sample size becomes larger, the sampling distribution of the sample mean approaches a a. binomial distribution b. normal distribution c. chi-square d. poisson distribution
b. normal distribution. As the sample size becomes larger, the sampling distribution of the sample mean approaches a normal distribution.
Explanation:
As the sample size becomes larger, the sampling distribution of the sample mean approaches a normal distribution. This concept is known as the Central Limit Theorem, which states that the distribution of sample means approximates a normal distribution as the sample size increases, regardless of the population's distribution.
The Central Limit Theorem states that as the sample size increases, the sampling distribution of the sample mean approaches a normal distribution, regardless of the shape of the population distribution from which the samples are drawn. This is true for any population distribution, including those that are not normally distributed.
The binomial distribution, chi-square distribution, and Poisson distribution are all probability distributions with specific characteristics and are not necessarily related to the sampling distribution of the sample mean. However, the normal distribution is often observed as an approximation to the sampling distribution of the sample mean when the sample size is large, making option b, "normal distribution," the correct answer.
Know more about the normal distribution click here:
https://brainly.com/question/15103234
#SPJ11
Use a triple integral to find the volume of the given solid. The solid enclosed by the paraboloids y = x^2 + z^2 and y = 8 – X^2 – z^2.
The volume of the given solid is [tex]}V= \frac{32}{3} (π)[/tex]
To find the volume of the solid enclosed by the two paraboloids, we can set up a triple integral over the region of integration in xyz-space.
The paraboloids intersect where [tex]y = x^2 + z^2 = 8 -x^2 -z^2[/tex].
Solving for [tex]x^2 + z^2[/tex] we get:
[tex]x^2 + z^2 = 4[/tex]
This is the equation of a cylinder with radius 2, centered at the origin. Therefore, the region of integration is the volume enclosed between the two paraboloids within this cylinder.
To set up the triple integral, we need to choose an order of integration and determine the limits of integration for each variable.
Let's choose the order of integration as dz dy dx. Then the limits of integration are:
For z: from [tex]-\sqrt{4-x^{2} } to \sqrt{4-x^{2} }[/tex]
For y: from [tex]x^2 + z^2 to 8 - x^2 - z^2[/tex]
For x: from -2 to 2
Therefore, the triple integral to find the volume is:
integral from -2 to 2 [integral from [tex]x^2 + z^2 to 8 - x^2 - z^2[/tex] [integral from [tex]-\sqrt{4-x^{2} } to \sqrt{4-x^{2} }[/tex] dz] dy] dx
Evaluating this triple integral gives the volume of the solid enclosed by the two paraboloids within the cylinder to be:
[tex]V= \frac{32}{3} (π)[/tex]
To know more about "Volume" refer here:
https://brainly.com/question/28338582#
#SPJ11
Use the number line to answer the following 2 questions. 0 5 6 12 5 H 0 1 2 3 groups 1 1. How many groups of are in 4? 5 18 5 24 5 +|+++++> 4
The values of the numerical operations obtained using the number line indicates;
1. 20 groups
2. 3 1/3
What is a number line?A number line consists of a line marked at (regular) intervals, which can be used for performing numerical operations.
The number line indicates that each small marking is 1/5
1. The number of groups of 1/5 in 4, can be obtained by counting the number of small markings from the start of the number line to 4 as follows;
The number of small markings between 0 and 4 = 20
Therefore, the number of groups of 1/5 that are in 4 are 20 groups
2. The value of 4 ÷ 6/5, can be obtained from the number line as follows;
The number of groups of 6/5 that are in 4, from the number line = 3 groups
The fraction of a group of 6/5 remaining when the three groups are counted before 4 is 2/5, which is (2/5)/(6/5) = 1/3
Adding the remaining fraction to the whole number value, we get the value of 4 ÷ (6/5) as follows;
4 ÷ (6/5) = 3 + 1/3 = 3 1/3Learn more on number lines here: https://brainly.com/question/29788107
#SPJ1
Find the sides and angles of the triangle.
Answer:
a ≈ 6.8, B ≈ 50°, C ≈ 82°
Step-by-step explanation:
You want to solve the triangle with A=48°, b=7, c=9.
Law of CosinesThe relation given by the law of cosines is ...
a² = b² +c² -2bc·cos(A)
a² = 7² +9² -2·7·9·cos(48°) ≈ 45.6895
a ≈ √45.6895 ≈ 6.76 ≈ 6.8
Law of SinesThe law of sines can be used to find one of the other angles:
sin(C)/c = sin(A)/a
C = arcsin(c/a·sin(A)) ≈ arcsin(9/6.7594·sin(48°)) ≈ 81.68° ≈ 82°
The remaining angle can be found from the sum of angles in a triangle:
B = 180° -A -C = 50°
The solution is a ≈ 6.8, B ≈ 50°, C ≈ 82°.
Answer:
a ≈ 6.8, B ≈ 50°, C ≈ 82°
Step-by-step explanation:
You want to solve the triangle with A=48°, b=7, c=9.
Law of CosinesThe relation given by the law of cosines is ...
a² = b² +c² -2bc·cos(A)
a² = 7² +9² -2·7·9·cos(48°) ≈ 45.6895
a ≈ √45.6895 ≈ 6.76 ≈ 6.8
Law of SinesThe law of sines can be used to find one of the other angles:
sin(C)/c = sin(A)/a
C = arcsin(c/a·sin(A)) ≈ arcsin(9/6.7594·sin(48°)) ≈ 81.68° ≈ 82°
The remaining angle can be found from the sum of angles in a triangle:
B = 180° -A -C = 50°
The solution is a ≈ 6.8, B ≈ 50°, C ≈ 82°.
What is A1=-100, and r=1/5
Okay, let's break this down step-by-step:
A1 = -100 - This means A1 has a value of -100
r = 1/5 - This means r is equal to 0.2 (one divided by 5)
So in summary:
A1 = -100
r = 0.2
Did I interpret those two lines correctly? Let me know if you need any clarification.
create an equation that models the total amount of money that Madison spends on fruit
Answer: 2.15g+0.75w=20.35
Step-by-step explanation:
Since we're creating an equation, we know it has to have an = sign. The total amount of money spent on g pounds of grapes and w pounds of watermelon is $2-.35, so we know that's going to be on the opposite side of the equal to sign. $2.15 is what a pound of g costs, so a g pounds of grapes would cost 2.15g. I used the same reasoning for the watermelons too to get 2.15g + 0.75w.
Answer:
2.15g+0.75w=20.35
Step-by-step explanation:
sorry im in a rush bye gtg :D
find the open intervals on which the function f(x)=−9x2 8x 10 is increasing or decreasing.
The function f(x) = -9x^2 + 8x + 10 is increasing on the interval (-∞, 4/9) and decreasing on the interval (4/9, ∞)
To find the open intervals on which the function f(x) = -9x^2 + 8x + 10 is increasing or decreasing, we need to find its first derivative and determine its sign over different intervals.
f(x) = -9x^2 + 8x + 10
f'(x) = -18x + 8
Setting f'(x) = 0, we get:
-18x + 8 = 0
x = 8/18 = 4/9
The critical point of the function is x = 4/9.
Now, we can determine the sign of f'(x) for x < 4/9 and x > 4/9 by testing a value in each interval.
For x < 4/9, let's choose x = 0:
f'(0) = -18(0) + 8 = 8 > 0
This means that f(x) is increasing on the interval (-∞, 4/9).
For x > 4/9, let's choose x = 1:
f'(1) = -18(1) + 8 = -10 < 0
This means that f(x) is decreasing on the interval (4/9, ∞).
Therefore, the function f(x) = -9x^2 + 8x + 10 is increasing on the interval (-∞, 4/9) and decreasing on the interval (4/9, ∞).
To learn more about function visit:
https://brainly.com/question/12431044
#SPJ11
calculate the mean, median, q1, q3. what is the relationship between the mean and the median and why?
To calculate the mean, median, q1, and q3, you will need a set of data. Once you have the data, you can find the mean by adding up all the numbers and dividing by the total number of values. The median is the middle value of the data set when it is arranged in order from lowest to highest. Q1 is the value that separates the bottom 25% of the data from the top 75%, while Q3 separates the top 25% from the bottom 75%.
The relationship between the mean and the median can tell you about the distribution of the data. If the mean is equal to the median, then the data is evenly distributed. If the mean is greater than the median, then the data is skewed to the right, meaning that there are a few high values that are affecting the overall average. If the mean is less than the median, then the data is skewed to the left, meaning that there are a few low values that are affecting the overall average.
To calculate the mean, median, Q1, and Q3, follow these steps:
1. Mean: Add all the values in your dataset and divide by the total number of values.
2. Median: Arrange the values in ascending order, then find the middle value. If there are two middle values, take their average.
3. Q1: Find the median of the lower half of the dataset, excluding the overall median if there's an odd number of values.
4. Q3: Find the median of the upper half of the dataset, excluding the overall median if there's an odd number of values.
The relationship between the mean and the median helps identify the skewness of the dataset. If the mean is greater than the median, the dataset is right-skewed, indicating more high-value outliers. If the mean is less than the median, the dataset is left-skewed, indicating more low-value outliers. If the mean and median are approximately equal, the dataset is likely symmetric with no skewness. This relationship helps understand the overall distribution of the data.
Visit here to learn more about outliers brainly.com/question/14704592
#SPJ11
suppose 900 players each have their own well-shuffled, standard deck of 52 cards. each player will draw the top card and look at the suit (hearts, diamonds, clubs, or spades).
The expected outcome would be that approximately 225 players would draw hearts, 225 players would draw diamonds, 225 players would draw clubs, and 225 players would draw spades. This can be answered by the concept of Probability.
In this scenario, 900 players are each given a standard deck of 52 cards that has been well-shuffled. Each player will draw the top card from their deck and identify the suit, which could be hearts, diamonds, clubs, or spades.
To begin, each player is given a deck of 52 cards, which is the standard number of cards in a deck. These decks are well-shuffled, meaning the cards are randomly arranged to prevent any specific order or pattern. Each player will draw the top card from their deck, revealing the suit of that card, which could be hearts, diamonds, clubs, or spades. Since there are four suits in a standard deck, the probability of drawing any particular suit is 1/4 or 25%.
Therefore, in this scenario with 900 players, each drawing one card from their shuffled deck, there will likely be a distribution of suits that is relatively close to 25% for each suit, but with some natural variation due to the randomness of the shuffling process.
Therefore, the expected outcome would be that approximately 225 players would draw hearts, 225 players would draw diamonds, 225 players would draw clubs, and 225 players would draw spades. However, due to the random nature of shuffling, the actual distribution of suits among the players may deviate slightly from this expected outcome.
To learn more about Probability here:
brainly.com/question/30034780#
#SPJ11
describe an algorithm that takes as input a list of n integers and finds the number of negative integers in the list.
An algorithm that takes as input a list of n integers and finds the number of negative integers in the list:
1. Initialize a variable called count to 0.
2. Loop through the list of n integers:
a. If the current integer is negative, increment the count variable by 1.
b. Otherwise, continue to the next integer.
3. Return the count variable as the number of negative integers in the list.
This algorithm iterates through each integer in the list and checks if it's negative. If it is, it increments a count variable. At the end of the loop, the count variable contains the total number of negative integers in the list, which is returned as the output of the algorithm.
Know more about algorithm here;
https://brainly.com/question/22984934
#SPJ11
An algorithm that takes as input a list of n integers and finds the number of negative integers in the list:
1. Initialize a variable called count to 0.
2. Loop through the list of n integers:
a. If the current integer is negative, increment the count variable by 1.
b. Otherwise, continue to the next integer.
3. Return the count variable as the number of negative integers in the list.
This algorithm iterates through each integer in the list and checks if it's negative. If it is, it increments a count variable. At the end of the loop, the count variable contains the total number of negative integers in the list, which is returned as the output of the algorithm.
Know more about algorithm here;
https://brainly.com/question/22984934
#SPJ11
Michael was offered a job that paid a salary of $36,500 in its first year. The salary was set to increase by 4% per year every year. If Michael worked at the job for 12 years, what was the total amount of money earned over the 12 years, to the nearest whole number?
The total amount of money earned over 12 years would be $483,732.
What is amount?Amount is a word used to describe a numerical value or quantity. It is commonly used in mathematics, finance, and economics in order to identify the size or magnitude of something. Within those contexts, it is often used to refer to the total sum of money, goods, or services that are available or being exchanged.
To calculate this, we can use the formula for compound interest:
A = [tex]P(1 + r/n)^{(nt)[/tex]
Where A is the total amount, P is the principal (initial amount), r is the interest rate (4% per year in this case), n is the number of times the interest is compounded per year (1 for annually) and t is the time (12 years in this case).
Plugging in the values, we get:
A = [tex]\$36,500 (1 + 0.04/1)^{(1\times 12)[/tex]
A = $483,732.
Therefore, the total amount of money earned over 12 years would be $483,732.
To learn more about amount
https://brainly.com/question/29550019
#SPJ1
The total amount of money earned over 12 years would be $483,732.
What is amount?Amount is a word used to describe a numerical value or quantity. It is commonly used in mathematics, finance, and economics in order to identify the size or magnitude of something. Within those contexts, it is often used to refer to the total sum of money, goods, or services that are available or being exchanged.
To calculate this, we can use the formula for compound interest:
A = [tex]P(1 + r/n)^{(nt)[/tex]
Where A is the total amount, P is the principal (initial amount), r is the interest rate (4% per year in this case), n is the number of times the interest is compounded per year (1 for annually) and t is the time (12 years in this case).
Plugging in the values, we get:
A = [tex]\$36,500 (1 + 0.04/1)^{(1\times 12)[/tex]
A = $483,732.
Therefore, the total amount of money earned over 12 years would be $483,732.
To learn more about amount
https://brainly.com/question/29550019
#SPJ1
Determine whether the given differential equation is exact. If it is exact, solve it. (If it is not exact, enter NOT.) (2xy2 − 5) dx + (2x2y + 7) dy = 0
A differential equation (2xy² − 5) dx + (2x²y + 7) dy = 0 is an exact differential equation
We know that a differential equation M dx + N dy = 0 is an exact differential equation when [tex]\partial N/\partial x=\partial M/\partial y[/tex]
Consider a differential equation (2xy² − 5) dx + (2x²y + 7) dy = 0
Comparing this equation with M dx + N dy = 0 we get,
M = (2xy² − 5)
and N = (2x²y + 7)
The partial derivative of M with respect to y is:
[tex]\frac{\partial M}{\partial y} \\\\=\frac{\partial}{\partial y}(2xy^2 -5)[/tex]
= 4xy ...........(1)
The partial derivative of N with respect to x is:
[tex]\frac{\partial N}{\partial x} \\\\=\frac{\partial}{\partial x}(2x^2y+7)[/tex]
= 4xy ...........(2)
From (1) and (2),
[tex]\partial N/\partial x=\partial M/\partial y[/tex]
Therefore, the differential equation is an exact differential equation
Learn more about the differential equation here:
https://brainly.com/question/14620493
#SPJ4
a right triangle has legs of 12 inches and 16 inches whose sides are changing. the short leg is decreasing by 2 in/sec and the long leg is growing at 5 in/sec. what is the rate of change of the hypotenuse? O-0.8 inch/sec O 16 inch/sec O 11.2 inch/sec O-0.2 inch/sec
the correct option is [tex]11.2 inch/sec[/tex] , as it represents the rate of change of the hypotenuse with the correct sign. Thus, option C is correct.
What is the change of the hypotenuse?Let's denote the short leg by 'x' and the long leg by 'y'. The given information states that [tex]dx/dt = -2[/tex] in/sec (since the short leg is decreasing by 2 in/sec) and dy/dt = 5 in/sec (since the long leg is growing at 5 in/sec).
We can use the Pythagorean theorem to relate the short leg, long leg, and hypotenuse of the right triangle:
[tex]x^2 + y^2 = h^2[/tex]
where 'h' represents the length of the hypotenuse.
Differentiating both sides of the equation with respect to time 't', we get:
[tex]2x(dx/dt) + 2y(dy/dt) = 2h(dh/dt)[/tex]
Substituting the given values for [tex]dx/dt, dy/dt, x,[/tex] and [tex]y,[/tex] we have:
[tex]2(12)(-2) + 2(16)(5) = 2h(dh/dt)[/tex]
Simplifying, we get:
[tex]-48 + 160 = 2h(dh/dt)[/tex]
[tex]112 = 2h(dh/dt)[/tex]
Dividing both sides by 2h, we get:
[tex](dh/dt) = 112/(2h)[/tex]
We can now plug in the given values for x and y to find h:
[tex]x = 12 in[/tex]
[tex]y = 16 in[/tex]
Using the Pythagorean theorem, we can solve for h:
[tex]h^2 = x^2 + y^2[/tex]
[tex]h^2 = 12^2 + 16^2[/tex]
[tex]h^2 = 144 + 256[/tex]
[tex]h^2 = 400[/tex]
[tex]h = \sqrt400[/tex]
h = 20 in
Now, substituting the value of h into the equation for [tex](dh/dt),[/tex] we get:
[tex](dh/dt) = 112/(2\times 20)[/tex]
[tex](dh/dt) = 112/40[/tex]
[tex](dh/dt) = 2.8 in/sec[/tex]
So, the rate of change of the hypotenuse is 2.8 in/sec. However, note that the question asks for the rate of change of the hypotenuse with the correct sign, indicating whether it is increasing or decreasing.
Since the long leg is growing at 5 in/sec and the short leg is decreasing at 2 in/sec.
the hypotenuse must be increasing at a rate of 2.8 in/sec (as the change in the long leg is dominating over the change in the short leg).
Therefore, the correct option is [tex]11.2 inch/sec,[/tex] as it represents the rate of change of the hypotenuse with the correct sign.
Learn more about hypotenuse here:
https://brainly.com/question/29407794
#SPJ1
�
=
5
9
(
�
−
32
)
The equation above shows how temperature
�
, measured in degrees Fahrenheit, relates to a temperature
�
, measured in degrees Celsius. Based on the equation, which of the following must be true?
A temperature increase of 1 degree Fahrenheit is equivalent to a temperature increase of
5
9
degree Celsius.
A temperature increase of 1 degree Celsius is equivalent to a temperature increase of 1.8 degrees Fahrenheit.
A temperature increase of
5
9
degree Fahrenheit is equivalent to a temperature increase of 1 degree Celsius.
A) I only
B) II only
C) III only
D) I and II only
HELPPPPP MEEEE
The correct option is D. To solve the problem of Temperature we use formula °Fahrenheit = (9/5)C + 32,celsius = (°F - 32) * 5/9
What is Temperature?Temperature is a measure of the degree of hotness or coldness of a body or environment, often measured in units such as Celsius or Fahrenheit.
What is Fahrenheit and celsius?Fahrenheit and Celsius are two scales used to measure temperature. Fahrenheit is commonly used in the United States and its territories, while Celsius is used in most other parts of the world. The boiling point of water is 212°F or 100°C, and the freezing point of water is 32°F or 0°C on the Fahrenheit and Celsius scales, respectively.
According to the given information:
From the given equation:
°F = (9/5)C + 32
We can see that an increase of 1 degree Fahrenheit is equivalent to an increase of (9/5) degree Celsius, as the coefficient of C is 9/5. Therefore, statement I is true.
To determine if statement II is true, we can rearrange the equation to solve for C:
C = (°F - 32) * 5/9
So an increase of 1 degree Celsius is equivalent to an increase of (5/9) degree Fahrenheit temperature, as the coefficient of °F is 5/9. Therefore, statement II is also true.
However, statement III is not true, as an increase of (5/9) degree Fahrenheit is equivalent to an increase of 5/9 * 9/5 = 1 degree Celsius, not (5/9) degree Celsius.
Therefore, the answer is (D) I and II only.
To know more about Temperature,Fahrenheit and celsius Visit:
https://brainly.com/question/28863639
#SPJ1
Help
Please now ASAPpppp
The area of the given hexagon is 419.1 square units
Calculating the area of a hexagonFrom the question, we are to determine the area of the given hexagon.
The area of a hexagon is given by the formula,
Area = 1/2 Apothem × Perimeter
From the given information,
Apothem = 11
Now, we will determine the perimeter
First, we need to find the length of a side
Let the length of a side be s and half the length be x
Then,
tan (30°) = x / 11
x = 11 × tan(30)
x = 6.35
Length of a side = 6.35 × 2
Length of a side = 12.70
Thus,
Area = 1/2 Apothem × Perimeter
Area = 1/2 × 11 × 6 × (12.70)
Area = 419.1 square units
Hence,
The area is 419.1 square units
Learn more on Calculating area of hexagon here: https://brainly.com/question/30384520
#sPJ1
Minimize f (x, y, z) = x^2 + y^2 + z^2 subject to 4x^2 + 2y^2 + z^2 = 4. Minimum Value
The given problem does not have a minimum value as the constraint equation and the values of x, y, z obtained from the partial derivatives of the Lagrange equation are contradictory.
What is equation?Equation is a mathematical statement that expresses the equality of two expressions on either side of an equal sign. It is used to solve problems or to find unknown values. An equation is usually composed of two or more terms that are separated by an equal sign. Each side of the equation must have the same value in order for the equation to be true.
The given problem is a constrained optimization problem which can be solved using the Lagrange multiplier method. According to the Lagrange multiplier method, the objective function and the constraint equation must be combined into a single equation. Thus, the Lagrange equation for the given problem is given by:
L(x,y,z,λ) = x² + y² + z² + λ(4x² + 2y² + z² - 4)
Now, the partial derivatives of the Lagrange equation with respect to x, y and z is given by:
∂L/∂x = 2x + 8λx
∂L/∂y = 2y + 4λy
∂L/∂z = 2z + 2λz
Setting the partial derivatives of the Lagrange equation equal to zero, we get:
2x + 8λx = 0
2y + 4λy = 0
2z + 2λz = 0
Solving the above equations, we get:
x = 0
y = 0
z = 0
Substituting these values in the constraint equation, we get:
4x² + 2y²+ z² = 4
4(0)² + 2(0)²+ (0)²= 4
0 = 4
Which is a contradiction. Hence, the given problem does not have a minimum value.
In conclusion, the given problem does not have a minimum value as the constraint equation and the values of x, y, z obtained from the partial derivatives of the Lagrange equation are contradictory.
To know more about equation click-
http://brainly.com/question/2972832
#SPJ1
use polynomial fitting to find the formula for the nth term of the sequence (an)n≥0 which starts at 2, 5 ,11, 21, 36
The formula for the nth term of the sequence (an)n≥0, which starts at 2, 5, 11, 21, 36, is an = n^4 - 3n^3 + 5n^2 - n + 2.
To use polynomial fitting to find the formula for the nth term of the sequence (an)n≥0 which starts at 2, 5, 11, 21, 36, follow these steps:
1. List the terms with their corresponding indices (n values): (0, 2), (1, 5), (2, 11), (3, 21), (4, 36).
2. Since there are 5 terms, assume a 4th-degree polynomial of the form: an^4 + bn^3 + cn^2 + dn + e.
3. Substitute the indices and corresponding terms into the polynomial and form a system of linear equations:
e = 2
a + b + c + d + e = 5
16a + 8b + 4c + 2d + e = 11
81a + 27b + 9c + 3d + e = 21
256a + 64b + 16c + 4d + e = 36
4. Solve the system of linear equations:
a = 1, b = -3, c = 5, d = -1, e = 2
5. Substitute these values back into the polynomial:
a_n = n^4 - 3n^3 + 5n^2 - n + 2
So, the formula for the nth term of the sequence (an)n≥0, which starts at 2, 5, 11, 21, 36, is: an = n^4 - 3n^3 + 5n^2 - n + 2.
Learn more about sequences:https://brainly.com/question/7882626
#SPJ11
Is W a subspace of the vector space? W is the set of all matrices in Mn,n with zero determinants
W is not a subspace of the vector space of all matrices in Mn,n.
To determine if W is a subspace of the vector space:
We need to check if W meets the criteria of a subspace.
To be a subspace of a vector space, W must satisfy three conditions:
1. W must contain the zero matrix.
2. W must be closed under vector addition.
3. W must be closed under scalar multiplication.
Let's examine each condition for W:
1. W contains the zero matrix: The zero matrix has a determinant of 0, so it is included in W.
2. W is closed under vector addition: If A and B are matrices in W with zero determinants, their sum,
A + B, should also have a zero determinant to be in W.
The determinant property for sums of matrices doesn't guarantee that det(A+B) = det(A) + det(B), so we can't guarantee that W is closed under vector addition.
Since W fails to meet the second condition, it is not a subspace of the vector space of all matrices in Mn,n.
To know more about Matrix:
https://brainly.com/question/9967572
#SPJ11
Which triangles are similar?
The two triangles that are similar are triangles A and B
What are similar triangles?Similar triangles are triangles that have the same shape, but their sizes may vary. For two triangles to be equal, the corresponding angles must be equal and the ratio of corresponding sides must be equal.
Checking the three triangles, triangle A has the angles of 125° , 25° and the third angle can be calculated as 180-(125+25) = 180-150 = 30°
Triangle B has 125°, 30° and the Third angle can be calculated as 180-(125+30) = 180-155 = 25°
Triangle C has the angle 35°,25° and the third angle can be calculated as 180-(35+25) = 180-60 = 130°
Therefore,it is shown That triangles And B are similar to each other because they have thesame corresponding angles.
learn more about similar triangles from
https://brainly.com/question/14285697
#SPJ1
How does g(x)=2x change over the interval from x=8 to x=9?
Increases by 100%
increases by 2
increases by 2%
decreases by 2%
The percentage increase of the function from g(x) over the interval x = 8 to x = 9, is 100%. The correct option is therefore;
Increase by 100%
What is a percentage increase?A percentage increase is the representation of the increase of a quantity over an interval as a percentage.
Whereby the function is expressed as follows;
g(x) = 2ˣ
The value of the function at the values x = 8, and x = 9, are;
g(x) = 2ˣ
g(8) = 2⁸ = 256
g(9) = 2⁹ = 512
The percentage increase is therefore;
Percentage increase = ((g(9) - g(8))/g(8)) × 100
Percentage increase = ((2⁹ - 2⁸)/(2⁸)) × 100
2⁸ × ((2 - 1)/(2⁸)) × 100 = 100%
Therefore, the change of g(x) over the interval from x = 8 to x = 9 is an increase of 100%
Learn more on percentages here: https://brainly.com/question/11642822
#SPJ1
4. Find the length of arc s.
7 cm
0
02 cm.
5 cm
The length of the arc s as required to be determined in the attached image is; 17.5 cm.
What is the length of the arc s?It follows from the task content that the length of the arc s is to be determined from the given information.
As evident in the task content, the angle subtended at the center of the two concentric circles is same for the 2cm and 5 cm radius circles.
On this note, it follows from proportion that the length of an arc is directly proportional to the radius of the containing circle.
Therefore, the ratio which holds is;
s / 5 = 7 / 2
s = (7 × 5) / 2
s = 17.5 cm.
Consequently, the length of the arc s is; 17.5 cm.
Read more on length of an arc;
https://brainly.com/question/28108430
#SPJ1
A bottle of oil has a capacity of 4000 ml. It is half full.
How many litres of oil are there in the bottle?
Answer:
2 litres
Step-by-step explanation:
The capacity of a bottle of oil = 4000 ml
It is said that the bottle is half full so the half of 4000 is 2000.
Now, to convert ml to litre we need to divide 2000 by 1000
= 2000÷1000=2
Therefore, the answer is 2 litres
hope it helps! byeee
identify the integers that are congruent to 5 modulo 13. (check all that apply.)
a. 103
b. -34
c. -122
d. 96
Answer:
Therefore, the integer that is congruent to 5 modulo 13 is 122.
Step-by-step explanation:
Pls help me with this question whoever
Based on the information, No, Rayen's statement is not correct.
How to calculate the expressionThe expression 6(3 + 5) yields a simplified result of 6(8) = 48, which reflects the total servings acquired from eight batches.
In the first week, 18 servings were made, which converts to 3 batches (breaking down to 3 batches x 6 servings per batch = 18 servings). Similarly, for the second week, 30 servings are attained, equivalent to 5 batches (5 batches x 6 servings per batch = 30 servings).
So the entirety of batches created during these two weeks amounts to 3 + 5 = 8, summing up the complete number of servings processed being 18 + 30 = 48. Consequently, the truth is that the expression 6(3 + 5) is not representative of either the number of batches yielded each week or the absolute number of servings constructed.
Learn more about word problem on
https://brainly.com/question/21405634
#SPJ1
H(1)=9 h(2)=3 h(n) = h(n-2)x h(n-1). H(3) = evaluate sequences in recursive form
Answer:
Using the given recursive formula, we can find the value of H(3) as follows:
H(3) = H(1) x H(2)
H(3) = 9 x 3
H(3) = 27
Therefore, H(3) = 27.
Step-by-step explanation:
Answer:
The sequence you provided is a recursive sequence where each term is defined using the two previous terms. Given that H(1) = 9 and H(2) = 3, we can find H(3) by multiplying H(1) and H(2): H(3) = H(1) x H(2) = 9 x 3 = 27.
Determine the intersection, union, and complement sets from the given information.
44. U=(2, 4, 6, 8)
A = (2, 4)
B = (6,8)
a. A ∩ B =
b. AUB=
c. (AUB)' =
The intersection, union, and complement sets based on the universal set U = {2, 4, 6, 8}, are;
a. A ∩ B = {∅}
b. A ∪ B = {2, 4, 6, 8}
c. (A ∪ B)' = {∅}
What is a universal set?The universal set is the set to which the other sets are subsets, and one which contains all the elements.
The Universal set is; U = (2, 4, 6, 8)
The set A = (2, 4)
The set B = (6, 8)
Therefore;
a. The set A ∩ B is the set of elements common to both sets A and B
Therefore no elements common to both sets A and B, therefore;
A ∩ B = {∅}
b. The set A ∪ B is the set that contains elements in set A and elements in set B as well as elements in set A ∩ B
The set A ∪ B = {2, 4, 6, 8}
c. The set of the complement of the union of the set A and B is the set that contains elements that are not in the union of set A and B
A ∪ B = {2, 4, 6, 8} = U,
U' = {∅}
Therefore (A ∪ B)' = {∅}
Learn more on set theory here: https://brainly.com/question/31304575
#SPJ1
What is the value of the constant of variation when y varies inversely as x and the following are true y = 5 and x = 2?
Answer:
k = 10
Step-by-step explanation:
given y varies inversely as x then the equation relating them is
y = [tex]\frac{k}{x}[/tex] ← k is the constant of variation
to find k use the condition that y = 5 when x = 2
5 = [tex]\frac{k}{2}[/tex] ( multiply both sides by 2 )
10 = k
Divide 500 among aryl,joy and kenneth such that arlyn's share is 2/3 of joy's share ang joy's share is 2/3 of Kenneth's share how much will each get?
The amount that each will get from the given fraction of amount is :
Kenneth's share = $236.842
Joy's share = 2/3 x = $157.895
Arlyn's share = 4/9 x = $105.263
Given that,
Total amount = 500
Let the fraction of amount of money Kenneth gets = x
The fraction of amount of money Joy gets = 2/3 of Kenneth's share
= 2/3 x
The fraction of amount of money Arlyn gets = 2/3 of joy's share
= 2/3 (2/3 x)
= 4/9 x
Now,
x + 2/3x + 4/9 x = 500
(9x + 6x + 4x) / 9 = 500
9x + 6x + 4x = 4500
19x = 4500
x = 236.842
Kenneth's share = $236.842
Joy's share = 2/3 x = $157.895
Arlyn's share = 4/9 x = $105.263
Hence each will get $236.842, $157.895 and $105.263.
Learn more about Fractions here :
https://brainly.com/question/30423291
#SPJ1