Answer:
The correct option is the third one counting from the top. (5892 m^2)
Step-by-step explanation:
First, we need to remember that:
For a rectangle of length L and width W, the area is:
A = L*W
For a circle of diameter D, the area is:
A = pi*(D/2)^2
Where pi = 3.14
In the image, we can see a rectangle and half a circle, the total area of the image will be equal to the area of the rectangle plus the area of the half circle.
In the image, we can see a rectangle of length L = 100m and width W = 50m
Then the area of the rectangle is:
A = 100m*50m = 5000m^2
And we can see that for the half-circle the diameter is D = 50m
Note that the area of a half-circle is half of the area of a complete circle, then the area of that half-circle is:
A = (1/2)*(3.14*(50m/2)^2) = 981.25 m^2
If we add these two areas we get:
Total area = 5000m^2 + 981.25 m^2 = 5981.25 m^2
If we round it up, we get:
Total area = 5982 m^2
The correct option is the third one counting from the top.
Question 12 options:
Nick determines the remainder of
, using the remainder theorem.
How does she proceed to the correct answer?
Fill in the blanks from the work bank below: (do not enter spaces)
x = 1 x = -1 x = 0 -23 -19 -15 -29
Nick evaluates the numerator of the rational expression when
. He concludes that the remainder of the division is
The input value for the expression is 1 and the remainder is -15.
What is the remainder theorem?The Remainder Theorem begins with an unnamed polynomial p(x), where "p(x)" simply means "some polynomial p with variable x". The Theorem then discusses dividing that polynomial by some linear factor x a, where an is simply a number.
Given polynomial is 5x⁴⁵ - 3x¹⁷ +2x⁴ - 19 and is divided by x + 1. Find the value of the polynomial at 1 and then calculate the remainder by synthetic solution.
F(x) = 5x⁴⁵ - 3x¹⁷ +2x⁴ - 19
F(1) = 5 - 3 + 2 - 19
F(1) = -19 + 4
F(1) = -15
The remainder will be calculated by synthetic calculation,
1 __5 ___-3___2_____-19
|
| ______5___ 2______4
5 2 4 -15
The remainder of the given expression is -15.
To know more about the remainder theorem follow
https://brainly.com/question/27749132
#SPJ1
Suppose that in a certain state, all automobile license plates have three uppercase letters followed by four digits. Use the method illustrated in Example 9.2.2 to answer the following questions. (a) How many different license plates are possible? To answer this question, think of creating a license plate as a 6-step process, where steps 1-3 are to choose the uppercase letters to put in positions 1-3 and the remaining steps are to choose the digits to put in the remaining positions. There are 17576 ways to perform steps 1-3, and there are 10000 ways to perform the remaining steps. Thus, the number of license plates is 175760000 (b) How many license plates could begin with A and end in 0? and the number of ways to place the 0 in the In this case, the number of ways to place the A in Step 1 is 1 final step is 1 . Thus, the answer is 676000 (c) How many license plates could begin with BWC? In this case, the number of ways to perform steps 1-3 is ___ Thus, the answer is ___(d) How many license plates are possible in which all the letters and digits are distinct? (e) How many license plates could begin with AB and have all letters and digits distinct? Enter an exact number
the total number of license plate is 17576000 and In this the number ways to place 'A' in step 1 is = '1'1, and the number of steps '0' in final steps id '1' thus the total answer is 67600
What is permutation and combination?In mathematics, there are two alternative methods for dividing up a collection of items into subsets: combinations and permutations. Any order may be used by a combination to list the subset's elements. An ordered list of a subset's components is called a permutation.
There are [tex]26^3[/tex] = 17576, ways to perform step 1-3, and there are [tex]10^3[/tex] = 1000, ways to perform remaining steps .
the total number of license plate is 17576000
In this the number ways to place 'A' in step 1 is = '1'1, and the number of steps '0' in final steps id '1'
thus the total answer is 67600
26 X 25 X 24 X 10 X 9 X 8 = 11232000
24 X 10 X 9 X 8 = 17280
To know more about permutation and combination visit:
https://brainly.com/question/29594894
#SPJ4
on their next training run, pepe averaged a speed of 2/3 of a mile in 5 minutes, while paula averaged 1/4 of a mile in 2 minutes. if pepe and paula each ran at their individual pace for 60 minutes, how many total miles did they cumulatively run?
Answer:
15.5
Step-by-step explanation:
Pepe= 2/3 x 12 = 8
Paula= 1/4 x 30 = 7.5
8+7.5=15.5
Alex biked a 48-mile trail in 4 hours. For the first half of the time, he biked twice as fast as he did the second half of the time. What speed did Alex bike the first half?
Alex's speed in the first half of the time is 12 miles per hour
How t find the speed of bikingInformation from the problem include:
For the first half of the time, Alex biked a 48-mile trail in 4 hours.
he biked twice as fast as he did the second half of the time.
Average speed is calculated using the ratio of distance to time spent
this is represented by the formula
= distance / time
The speed for the first half is solved as below
= 48 mile / 4 hours
= 12 mile / hours
= 12 mph
speed for the first half is 12 mph
Learn more about speed at:
https://brainly.com/question/4931057
#SPJ1
a duck flew at 18 miles per hour for 3 hours than at 15 miles per hour for 2 ours how far did the duck fly in all
The distance the duck fly in all is 99 miles
How to determine how far the duck fly in allFrom the question, we have the following parameters that can be used in our computation:
Distance 1: 18 miles per hour for 3 hoursDistance 2: 15 miles per hour for 2 hoursThe distance covered in all can be calculated as
Distance = The sum of the product of speed and time
Substitute the known values in the above equation, so, we have the following representation
Distance = 18 * 3 + 15 * 2
Evaluate the products
This gives
Distance = 54 + 45
Evaluate the sum
Distance = 99 miles
Hence, the distance is 99 miles
Read more about speed at
https://brainly.com/question/14335655
#SPJ1
Which of the following represents members of the domain of the graphed function?
See attached picture
Responses
{-4, 2, 3}
{-4, 0, 1}
{1, 2, 3, 4}
{1, 2, 3, 5}
The {-4, 0, 1} represents members of the domain of the graphed function.
What is the domain of the function?
A function is a mathematical object that accepts input, appears to apply a rule to it, and returns the result.
A function can be thought of as a machine that requires in a number, performs some operation(s), and then outputs the result.
The domain of a function is the collection of all its inputs. Its codomain is the set of possible outputs.
The range refers to the outputs which are actually used.
Domain: {-4, 0, 1}.
Simply list the domain as -4 < x < 2, which would imply ALL values between -4 and 2 inclusive.
Yes, this is a function. No x-values repeat, and it passes the Diagonal Line Test for functions.
Hence, the {-4, 0, 1} represents members of the domain of the graphed function.
To learn more about the domain of the function visit,
https://brainly.com/question/28934802
#SPJ1
Staci pays $32.70 for 5 cell phone cases. Each case costs the same amount. How much does each case cost?
Part A
Which expression represents the problem?
$32.70 × 5
$32.70 ÷ 5
$32.70 + 5
$32.70 – 5
Part B
Evaluate the expression from Part A.
$ ( ??? )
Answer:
$32.70 ÷ 5
Each case is $6.54.
Step-by-step explanation:
$3270 for 5 cases, meaning you would split $32.70 into 5.
$32.70 ÷ 5 phone cases = $6.54
This also means each case is $6.54. To prove this, multiply by 5.
a persons weight varies directly with gravity if a person weights 180 pounds on earth they will weigh only 30 pounds on the moon if harsh weights 54 pounds on earth how much would he weight on the moon
The weight of harsh on the moon if he weighs 54 pounds on earth is 9 pounds
How to calculate direct variation?Weight varies directly with gravity
Let
Weight of a person = w
Gravity = g
So,
w = k × g
Where,
k = constant of proportionality
If w = 180 pounds and g = 30 pounds
w = k × g
180 = k × 30
180 = 30k
divide both sides by 30
k = 180/30
k = 6
If w = 54 pounds g = ?
w = k × g
54 = 6 × g
54 = 6g
divide both sides by 6
g = 54/6
g = 9 pounds
Therefore, harsh weighs 9 pounds on the moon.
Read more on direct variation:
https://brainly.com/question/6499629
#SPJ1
A circle with center w is shown in the figure below.
Radius = TW
Diameter = TX
Chord = UV
The length of TX is 6 units.
What is a circle?A circle is a two-dimensional figure with a radius and circumference of 2 x pi x r.
The area of a circle is given as πr².
We have,
From the figure:
Diameter = TX
Radius = TW or WX or WY
Chord = UV
WY = 3 units
TX = TW + WX = 3 + 3 = 6 units.
Thus,
TX is 6 units.
Learn more about circle here:
https://brainly.com/question/11833983
#SPJ1
i literally don’t know
∠U is congruent ∠S because all right angles are congruent.
Define congruent.If it is possible to superimpose one geometric figure on the other so that their entire surface coincides, that geometric figure is said to be congruent, or to be in the relation of congruence. When two sides and their included angle in one triangle are equal to two sides and their included angle in another, two triangles are said to be congruent. This concept of congruence appears to be based on the idea of a "rigid body," which may be moved without affecting the internal relationships between its components.
Given
∠U ≅ ∠S
All right angles are congruent.
To learn more about congruent, visit:
https://brainly.com/question/7888063
#SPJ1
Here we show that function defined on an interval value property cannot have (a; b) and satisfying the intermediate removable or (a) jump discontinuity. Suppose has & jump discontinuity at Xo € (a,b) and lim f (x) lim f (x) xx0 {ix0 Choose 0 such that lim f (x) < 0 < lim f (x) and 0 + f(xo) xI*o Xx0 In Exercise & we showed there is interval [xo 0,.Xo) such that f(x) < 0 if Xe [xo 6,xo): Likewise, there an interval (xo, Xo + 6] such that f(x) > 0 if xe(xo, Xo + 6]. Conclude that does not satisly the intermediate value property on [xo 6,xXo + 6]. (6) Suppose has a removable discontinuity at Xo € (a,b) and a = lim f(x) < f(xo) Show that there is an interval [xo = 6,Xo) such that f(x)< a+[f(xo) - &] if x e[xo 6,Xo]: Conclude that f does not satisfy the intermediate value property
f cannot have a jump discontinuity at [tex]$x_0 \in(a, b)$[/tex] and [tex]$$ \lim _{x \uparrow x_0} f(x) < \lim _{x \mid x_0} f(x) .$$[/tex]
f cannot have a removable discontinuity at [tex]$$x_0 \in(a, b) $$[/tex] and [tex]\alpha=\lim _{x \rightarrow x_0} f(x) < f\left(x_0\right)[/tex]
Let f be a function defined on (a, b) satisfies intermediate value property.
Claim: f ca not have removable on jump discontinuity.
Suppose f has a jump discontinuity at [tex]$x_0 \in(a, b)$[/tex]
We take [tex]$\theta$[/tex] such that
[tex]$$\lim _{x \rightarrow x_0} f(x) < \theta < \lim _{x \downarrow x_0} f(x) \text { and } \theta \neq f\left(x_0\right)$$[/tex]
Now there exist [tex]$\delta > 0$[/tex] such that [tex]$f(x) < \theta$[/tex] for all [tex]$x \in\left[x_0-\delta, x_0\right)$[/tex] and [tex]$f(x) > \theta$[/tex] for all [tex]$x \in\left(x_0, x_0+\delta\right]$[/tex]
Now [tex]$f\left(x_0-\delta\right)[/tex][tex]< \theta < f\left(x_0+\delta\right)$[/tex] for all [tex]$x \in\left[x_0-\delta, x_0+\delta\right] \backslash\left\{x_2\right\}$[/tex] and [tex]$f\left(x_0\right) \neq \theta$[/tex].
Therefore the point [tex]$\theta$[/tex] has no preimage under f
that is, there does not exists [tex]$y \in\left[x_0-\delta, x_0+\delta\right][/tex] for which
[tex]$$f(y)=\theta[/tex] because [tex]\left\{\begin{array}{l}y=x_0 \Rightarrow f(y) \neq \theta \\y > x_0 \Rightarrow f(y) > \theta \\y < x_0 \Rightarrow f(y) < \theta\end{array}\right.$$[/tex]
Therefore f does not satisfies intermediate value property on [tex]$\left[x_0-\delta, x_0+\delta\right]$[/tex],
Hence f does not satisfies IVP on (a, b) which is not possible because we assume f satisfies IVP on (a, b),
Therefore f can not have a jump discontinuity.
Suppose f has a removable point of discontinuity at [tex]$x_0 \in(a, b)$[/tex],
Let [tex]$\alpha=\lim _{\alpha \rightarrow x_0} f(x)$[/tex],
Let [tex]\alpha < f\left(x_0\right)$[/tex] so [tex]$f\left(x_0\right)-\alpha > 0$[/tex].
Now [tex]$\lim _{x \rightarrow x_0} f(x)=\alpha$[/tex] then [tex]\exists$ \delta > 0$[/tex] such that
[tex]$$\begin{aligned}& |f(x)-\alpha| < \frac{f\left(x_0\right)-\alpha}{2} \text { for all } x \in\left\{x_0-\delta, x_0-\alpha\right]-\left\{x_0\right\} \\& \Rightarrow \quad f(x) < \alpha+\frac{f\left(x_0\right)-\alpha}{2} \text { for all } x \in\left[x_0-\delta, x_0+\delta\right]-\left\{x_0\right\}\end{aligned}$$[/tex]
So [tex]$f(x) < \frac{f\left(x_0\right)+\alpha}{2}$[/tex] for all [tex]$x \in\left[x_0-\delta, x_0\right]-\left\{x_0\right\}$[/tex]
Now [tex]$f\left(x_0\right) > \alpha$[/tex].
And [tex]$f(x) < \frac{f\left(x_0\right)+\alpha}{2} < f\left(x_0\right)$[/tex] for all [tex]$x \in\left[\left(x_0 \delta, x_0\right)\right.$[/tex]
Let [tex]$\mu=\frac{f\left(x_0\right)+\alpha}{2}$[/tex].
Then there does not exist [tex]$e \in\left[x_0-\delta, c\right]$[/tex] such that [tex]$f(c)=\mu$[/tex]
Because for [tex]$e=x_0 \quad f(e) > \mu$[/tex]
for [tex]$c < x_0 \quad f(c) < \mu$[/tex].
Therefore f does not satisfy IVP on [tex]$\left[x_0-\delta_1 x_0\right]$[/tex] which contradict our hypothesis,
therefore [tex]$\alpha \geqslant f\left(x_0\right)$[/tex]
Let [tex]$\alpha > f\left(x_0\right)$[/tex]. so [tex]$\alpha-f\left(x_0\right) > 0$[/tex]
[tex]$\lim _{x \rightarrow x_0} f(x)=\alpha$[/tex]
Then [tex]\exists $ \varepsilon > 0$[/tex] such that
[tex]$|f(x)-\alpha| < \frac{\alpha-f\left(x_0\right)}{2}$[/tex] for all [tex]$\left.x \in\left[x_0-\varepsilon_0 x_0+\varepsilon\right]\right\}\left\{x_i\right\}$[/tex]
[tex]$\Rightarrow f(x) > \alpha-\frac{\alpha-f\left(x_0\right)}{2}$[/tex] for all [tex]$x \in\left[x_0-\varepsilon_1, x_0+\varepsilon\right] \backslash\left\{x_0\right\}$[/tex]
[tex]$\Rightarrow f(x) > \frac{\alpha+f\left(x_0\right)}{2}$[/tex] for all [tex]$x \in\left[x_0-\varepsilon_1, x_0\right)$[/tex]
Now [tex]$f\left(x_0\right) < \alpha$[/tex]
The [tex]$f(x) > \frac{f\left(x_0\right)+\alpha}{2} > f\left(x_0\right)$[/tex].
So [tex]$f\left(x_0\right) < \frac{f\left(x_0\right)+\alpha}{2} < f(x)$[/tex] for all [tex]$x \in\left[x_0 \varepsilon, \varepsilon_0\right)$[/tex]
Let [tex]$\eta=\frac{f\left(x_e\right)+\alpha}{2}$[/tex]
Then there does not exist [tex]$d \in\left[x_0-\varepsilon, x_0\right]$[/tex] such that [tex]$f(d)=\xi$[/tex].
Because if [tex]$d=x_0, f(d)=f\left(x_0\right) < \eta$[/tex] if [tex]$d E\left[x_0-\varepsilon, x_0\right)$[/tex]
Then [tex]$f(d) > \eta$[/tex]
Therefore f does not satisfies IVP on [tex]$\left[x_0-\varepsilon, x_0\right]$[/tex] which contradict olio hypothesis.
Therefore [tex]$\alpha \leq f\left(x_0\right)$[/tex] (b) From (a) and (b) it follows [tex]$\alpha=f\left(x_0\right)=\lim _{x \rightarrow x_0} f(x)$[/tex]. Therefore f can not have a removable discontinuous
For more questions on jump discontinuity and removable discontinuous
https://brainly.com/question/20530286
#SPJ4
You buy 9 granola bars for a camping trip. Each bar costs $0.95. What
is the total cost of 9 granola bars before tax?
Answer:
Step-by-step explanation: 9 multiplied by .95 = $8.55 before tax
What are the values of u and v?
u = ?°
v = ?°
Find the area of a circle with radius 6 ft.
Answer:
The area of the circle is 113.04 square feet.
Step-by-step explanation:
Given;Radius (r) = 6 ftπ = 3.14Formula;A = πr²A = 3.14 × (6)² ft
A = 3.14 × 36 ft
A = 113.04 square feet.
Thus, The area of the circle is 113.04 square feet.
Answer:
28.274 square feet
Step-by-step explanation:
Multiply the radius by pi
The owner of the Good Deals Store estimates that during business hours, an average of 3 shoppers per minute enter the store and that each of them stays an average of 15
minutes. The store owner uses Little's law to estimate that there are 45 shoppers in the store at any time.
Little's law can be applied to any part of the store, such as a particular department or the checkout lines. The store owner determines that, during business hours, approximately 84
shoppers per hour make a purchase and each of these shoppers spends an average of 5 minutes in the checkout line. At any time during business hours, about how many shoppers,
on average, are waiting in the checkout line to make a purchase at the Good Deals Store
Note that at any time during business hours, about 7 shoppers, on average, are waiting in the checkout line to make a purchase at the Good Deals Store. This is solved using Little Law.
What is littles Law?Little's Law asserts that the long-term average number of individuals in a stable system, L, is equal to the long-term average effective arrival rate,λ, multiplied by the average duration a customer spends in the system, W.
To compute,
First, let's make sure that all the variables use the same time unit.
Thus, if there are 84 shoppers who are making a purchase per house, then there will be: 84/60 minutes
= 1.4
This means that λ (rate) = 1.4 and the average time (W) is 5 minutes
Using Little's Law which states that the queuing formula is:
L = λW
Note that:
λ = 1.4 (computed)
W = 5 mintues (given)
Hence, the Average number of people in queue per time is:
L = 1.4 x 5
L = 7 shoppers.
Thus, it is correct to state that at any time during work hours, about 7 shoppers, on average, are waiting in the checkout line to make a purchase at the Good Deals Store.
Learn more about Little's Law:
https://brainly.com/question/29538196
#SPJ1
Full Question:
If shoppers enter a store at an average rate of r shoppers per minute and each stays in the store for an average time of T minutes, the average number of shoppers in the store, N, at any one time is given by the formula N=rT. This relationship is known as Little's law.
The owner of the Good Deals Store estimates that during business hours, an average of 3 shoppers per minute enter the store and that each of them stays an average of 15 minutes. The store owner uses Little's law to estimate that there are 45 shoppers in the store at any time.
Little's law can be applied to any part of the store, such as a particular department or the checkout lines. The store owner determines that, during business hours, approximately 84 shoppers per hour make a purchase and each of these shoppers spend an average of 5 minutes in the checkout line. At any time during business hours, about how many shoppers, on average, are waiting in the checkout line to make a purchase at the Good Deals Store?
10. ANEW ACAR. Solve for x and CR. *
X=
Given: ANEW ACAR
NE = 11
EW = 12
I
AR = 4y - 12
CA = 4x + 3
NW = x + y
Applying the definition of congruent triangles, the values of x and y are:
x = 2; y = 6
Length of CR = 8 units.
How to Find the Sides of Congruent Triangles?If two triangles are congruent to each other, based on the CPCTC, all their corresponding angles, and their corresponding sides will be equal to each other.
Given that triangles NEW and CAR are congruent to each other, therefore:
NE = CA
NW = CR
EW = AR
Given the following measures:
NE = 11
EW = 12
AR = 4y - 12
CA = 4x + 3
NW = x + y
Therefore:
NE = CA
11 = 4x + 3
Solve for x:
11 - 3 = 4x
8 = 4x
8/4 = x
x = 2
EW = AR
12 = 4y - 12
12 + 12 = 4y
24 = 4y
24/4 = y
y = 6
NW = CR = x + y
Plug in the values of x and y:
CR = 2 + 6
CR = 8 units.
Learn more about congruent triangles on:
https://brainly.com/question/1675117
#SPJ1
Convert the measurement. 28.4 grams ≈ ounces
Answer: 1.0017805194 ounces
Step-by-step explanation:
To change 28.4 g to oz divide the mass in grams by 28.349523125. The 28.4 grams to ounces formula is [oz] = [28.4] / 28.349523125. Thus, we get (all results rounded to 2 decimals):
28.4 g to oz = about 1 oz
28.4 g to ounces = about 1 ounces
28.4 grams to ounces = about 1 oz
Twenty-eight point four grams to ounces equal 1 international avoirdupois ounces, the unit used to measure grocery products (mass) in retail stores in the United States for example.
HOPE THIS HELPS 189328 :)!Use the Divergence Test to determine whether the following series diverges or state that the test is inconclusive. Select the correct answer below and fill in the answer box to complete your choice. O A. According to the Divergence Test, the series converges because lim ak = k- 00 (Simplify your answer.) OB. According to the Divergence Test, the series diverges because lim ax = kos (Simplify your answer.) OC. The Divergence Test is inconclusive because lim ak (Simplify your answer.) OD. The Divergence Test is inconclusive because lim ak does not exist.
The Divergence Test is inconclusive because lim ak = ∞
The Divergence Test is used to determine whether a given infinite series converges or diverges.
In order to use the Divergence Test, we must examine the limit of the terms of the series as n approaches infinity.
In the given series, the limit of the terms as n approaches infinity is not defined. Therefore, the Divergence Test is inconclusive.
The Divergence Test is inconclusive because lim ak = ∞
Learn more about test here
https://brainly.com/question/16944575
#SPJ4
Find the Derivative of 1/x+2
Answer: 2x+1
x
Step-by-step explanation:
5x^2-13+6=0
i need helppp
Answer:
answer is 2.5
Step-by-step explanation:
If (x+2) is a factor of
Answer: a=3 and b=1
Step-by-step explanation:
Let p(x)=x 2 +ax+2b
If x+2 is a factor of p(x)
Then by factor theorem
p(−2)=0
⇒(−2)
2
+a(−2)+2b=0
⇒4−2a+2b=0
⇒a−b=2 ---(i)
Also given that a+b=4 ---(ii)
Adiing (i) and (ii) we get
2a=6
⇒a=3
putting a=3 in (i) we get
a−b=2
⇒3−b=2
⇒b=1
Therefore we get a=3 and b=1
Find f. (Use C for the constant of the first antiderivative and D for the constant of the second antiderivative.)
f ''(x) = 2x + 4ex
After integration, the required function f is (2x³ - sin (x) + Cx + D).
What is the integration of 'xⁿ' and 'sin (x)'?
[tex]\int {x^{n} } \, dx = \frac{x^{n+1} }{n+1} + C\\\\\\\int {sinx} \, dx = -cosx + C[/tex]
Given, f''(x) = 12x + sin x
Therefore,
[tex]\int {f''(x)} \, dx \\\\=\int {f'(x)} \, dx \\\\\\= \int{12x + sin x} \, dx + C\\\\= 6x^{2} - cosx + C\\[/tex]
Again, f'(x) = 6x - cos (x) + C
Therefore,
[tex]\int {f'(x)} \, dx\\ \\=\int {f(x)} \, dx \\\\= \int {6x^{2} - cosx + C } \, dx \\\\= 2x^{3} - sinx + Cx + D[/tex]
Therefore, the required function is (2x³ - sin (x) + Cx + D).
Learn more about integration at:
brainly.com/question/17072971
#SPJ4
NO LINKS!!
The expoential function given by f(x) = e^x called the (a. natural logarithmic, natural exponential, c. 1 to 1 exponential, d. 1 to 1 algebraic, e. transcendental algebraic) function and the base e is called the (a. algebraic, b. 1 to 1, c. natural, d. rational, e. transcendental)
Answer:
natural exponential
natural
quizlet
Answer:
b. natural exponential
c. natural
Step-by-step explanation:
Given function:
[tex]f(x)=e^x[/tex]
The given exponential function is called the:
natural exponential functionThe base e is called the:
natural baseThe number "e" occurs naturally in math and the physical sciences.
It is the base rate of growth shared by all continually growing processes, and so is called the natural base.
It is an irrational number and named after the 18th century Swiss mathematician, Leonhard Euler, and so is often referred to as "Euler's number".
The two-way frequency table contains data about students' preferred exercise.
Enjoys swimming Enjoys cycling Row totals
Likes running 28 62 90
Does not like running 46 64 110
Column totals 74 126 200
What is the joint relative frequency of students who do not like to run but enjoy cycling?
64%
55%
32%
23%
The joint relative frequency for those students who don't like to run, but however enjoy cycling, is C. 32%.
How to find the joint frequency ?The joint frequency for students who like cycling, but do not like running, can be found by the formula :
= Number of students who enjoy cycling but don't enjoy running / Number of students in total
Number of students who enjoy cycling but don't enjoy running = 64
Number of students in total = 200
The joint frequency is :
= 64 / 200 x 100%
= 0.32 x 100 %
= 32 %
Find out more on joint frequency at https://brainly.com/question/3775864
#SPJ1
Does anyone know the answer for this?
The Venn diagram has been drawn and the product of LCM and GCF are the same as 24 x 36.
What is a Venn diagram?A Venn diagram is a pictorial representation of data represented in a circle.
The intersection parts of the circle represent the commonality of both sets.
As per the given, 24 and 36
The factors of 24 are as 2³ × 3
The factors of 36 are as 2² × 3²
The common factors 2² × 3
The LCM of 24 and 36 is 72 and the GCF is 12.
LCM x GCF = 24 x 12
72 x 12 = 24 x 12
864 = 864
Hence "After drawing a Venn diagram, it was discovered that the LCM and GCF product equals 24 x 36.".
To learn more about the Venn diagram,
https://brainly.com/question/29301560
#SPJ1
Write an equation for the line through the given point with the given slope in slope-intercept form. (10, –9); m = –2
Please explain.
Considering the definition of a line, the equation of the line that passes through the point (10, -9) and has a slope of -2 is y= -2x +11.
Linear equationA linear equation o line can be expressed in the form y = mx + b
where
x and y are coordinates of a point.m is the slope.b is the ordinate to the origin and represents the coordinate of the point where the line crosses the y axis.Line in this caseIn this case, you know:
The line has a slope of -2.The line passes through the point (10, -9).Substituting the value of the slope m and the value of the point y=mx+b, the value of the ordinate to the origin b is obtained as follow:
-9= -2×10 + b
-9= -20 + b
-9 + 20= b
11= b
Finally, the equation of the line is y= -2x +11.
Learn more about equation of a line:
brainly.com/question/20842634
#SPJ1
If x varies directly as y, find x when y = 8 a) x = 6 when y = 32 b) x = 14 when y = -2
a) The value of x is 42.6 when k =16/3 is directly proportional to y.
b) The value of x is -56 when k is -7 is directly proportional to y.
What kind of variation is one where x and y are directly proportional?
If x = ky for some constant k can be used to indicate the relationship between the variables y and x, then we may say that y varies directly with y or that x is directly proportional to y.x varies directly as y
x α y
x = ky
a) x=6 ; y = 32
x = ky
6 = k(32)
k = 16/3
if y = 8
then,
x = (16/3) * 8
= 128/3
x = 42.6
Hence, the value of x is 42.6 when k =16/3 is directly proportional to y.
b) x= 14 and y = -2
x = ky
14 = k(-2)
k = -7
if y = 8
then,
x = ky
x= (-7) 8
x = -56
Hence, the value of x is -56 when k is -7 is directly proportional to y.
To know more about proportional check the below link:
https://brainly.com/question/870035
#SPJ1
The square of a number is equal to 72 more than the number. Find all such numbers.
Answer:
You just need to think about this a little. There is a number, that you don't know, x, and if you square it ([tex]x^2[/tex]), that value will be equal to 72 more than the unknown number itself, so you put that into an equation.
Step-by-step explanation:
[tex]x^2=x+72\\x^2-x-72=0\\[/tex]
Apply quadratic formula (you can look it up)
[tex]x_1=\frac{-(-1)+\sqrt{(-1)^2+(-4*1*-72} )}{2(1)} \\\\x_2=\frac{-(-1)-\sqrt{(-1)^2+(-4*1*-72} )}{2(1)} \\\\[/tex]
There are two answers to the quadratic formula.
The rest should be easy.
what does
QR=
PR=
M
We need to use Right Angled Triangle Properties.
PR≈15 and QR≈12 is the length of the sides.
What is a Right Angled Triangle?
According to the definition of a right triangle, a triangle is referred to as a right-angled triangle or simply a right triangle if one of its angles is a right angle (90o). Triangle PQR is a right triangle in the illustration, and its components are its base, height, and hypotenuse. Here, QR is the base, PQ is the height, and PR is the hypotenuse. The essential side of a right triangle is its hypotenuse, which is also its largest side and sits across from the triangle's right angle.
In a right triangle we have: (Hypotenuse)2 = (Base)2 + (Altitude)2
Area of a right triangle = (1/2 × base × height) square units.
Calculation:PR is the Hypotenuse of the Triangle.
PQ=9
Angle ∡PQR=37° and Angle ∡RPQ=53°
So Sin(theta)=opposite side/Hypotenuse
⇒Sin(37°)=9/Hypotenuse
⇒Hypotenuse=9/0.6018
⇒Hypotenuse=14.955
PR⇒14.955
We know that (Hypotenuse)2 = (Base)2 + (Altitude)2
⇒(14.955)2=(9)2+(QR)2
QR=11.9438
PR≈15 and QR≈12
We need to use Right Angled Triangle Properties.
PR≈15 and QR≈12 is the length of the sides.
To refer more about Right Angled Triangle, visit:
https://brainly.com/question/1248322
#SPJ1
Sample Response: First, I wrote each ratio as a fraction. Then I found a common denominator of 20. The fraction 4/10 is 8/20. Comparing numerators, 8 is less than 12, so the ratio 4:10 is smaller.
Which did you include in your answer?
Check all that apply.
Write the ratios as fractions.
Find a common denominator.
Compare the numerators to see that 4:10 is the smaller ratio.
In the aforementioned scenario, the choice you must include in your response is to find a common denominator.
In the simplest terms, what is fraction?One can refer to a fraction as being in its lowest term or in its simple form when the numerator and denominator are known to have no common factors besides 1. In general, any number of equal pieces is represented by a fraction, which is a portion of the entire. A fraction, such as one-half, eight-fifths, or three-quarters, indicates the number of parts of a particular size when it is used in daily speech.
The common denominator will be between 10 and 20, and there is a common numerator as well. The common denominator will be 20 because both can divide it and 10 is less than 20.
Finding a common denominator is the solution you should choose in the scenario mentioned above.
To know more about fraction, visit:
https://brainly.com/question/10354322
#SPJ1