Answer:
The phases of the Moon depend on the moon's position compared to the Earth and the Sun. Remember that the moon revolves around the Earth. As the moon goes around the Earth, half of the moon is always illuminated by the Sun.
Draw the Lewis structure of (CHO)OCH, and then choose the appropriate set of molecular
geometries of the three central atoms. Your answer choice is independent of the orientation of
your drawn structure.
A) pyramidal/pyramidal / trigonal pyramidal
B) planar / trigonal pyramidal/trigonal planar
+
C) bent (120°) /planar/planar
D) trigonal planar / bent (109.5°) /tetrahedral
E) planar / planar / linear
Click to draw a new structure
Answer:
B
Explanation:
it does not have the lone pairs.
The respective molecular geometries of the central atoms in the molecule are; trigonal planar / bent (109.5°) /tetrahedral.
We know that the shape of molecules depends on the number of electron pairs that surround the central atoms in a molecule. In the molecule (CHO)OCH3, there are three central atoms.
From the Lewis structure of the molecule (CHO)OCH3 shown in the image attached, we can clearly see that the respective geometries of the central atoms in the molecule is; trigonal planar / bent (109.5°) /tetrahedral.
Learn more: https://brainly.com/question/6284546
Which cannot be chemically broken down into simpler substances?
O compound
O element
O solution
O mixture
Answer:
an element.
Explanation:
it is the purest form
Answer:
b
Explanation:
Answer this question correctly and you'll get a free brainliest. and a Thank you, etc.
Answer: When the metamorphic rock continues to heat up it will eventually melt creating molten rock. When it cools it will become igneous rock
Explanation:
:D
Answer:
As metamorphic rock continues to heat up, it can eventually melt and become molten/magma. When the molten rock cools it forms an igneous rock.
Explanation:
basically it need heat as hot as lava.
A person aims for a target with a wooden bow and arrow. The image shows the path of the
arrow to the target.
bow and arrow
target
Answer:
What’s the answer
Explanation:
I neeeddsdd
Is there anyone studying a doctor in pharmacy?
Answer:
no I am in 8 standard
I am already preparing for a doctor for my future
Sunday
Monday
What
The
Freak
Saturday
Pre-Lab Questions
Which of the following are considered matter?
electricity
fire
air
water
Answer:
Fire, Air, Water.
Explanation:
Matter is anything that has mass and occupies space. However, not all form of matter are visible. Air is an example of invisible matter.
Note, electricity does not have mass or does not occupy space. Therefore, electricity is not a matter.
Answer:
Fire, Air, Water
Explanation:
Electricity is the of charged particles conducting medium. However, it is the electrons that are matter, not their movement.
Matter is anything that has mass and occupies space. The flame itself is a mixture of gases and so is matter. The light and heat produced are energy not matter.
Like solids and liquids, air is matter. It has a weight and it takes up space.
Water is a liquid and liquids are one of the four fundamental states of matter.
How can energy from the Sun be used to heat water? What
things will affect how well the sunlight heats water?
Answer:
Water is heated as it travels through flat, glazed panels known as solar collectors, which are normally situated on the roof of the building. The heated water is then stored in an insulated storage tank.
How many π electrons are there in adenine? State which atoms contribute one electron to the π MOs and which atoms contribute two electrons?
Answer:
12 π electrons.
Explanation:
The structure of adenine can be seen below.
From the diagram, the total number of electrons in adenine is 70 electrons where 20 of them are core electrons.
Also from this same structure, we will notice that we have a total number of 12 π electrons.
i.e.
Each one of these five atoms described takes part in the π electron. These are N-1, N-3, N-7 which comprise of 2σ bonds, and also each of three N contributes one π electron.
Similarly, N-9 and N-10 contain 3σ bonds; Hence, each of them donates two electrons.
Thus;
5C = 5π electrons
3N = 3π electrons
2N = 4π electrons
= 12π electrons
if you a boy answer this question because............. idk
Answer:
no
Explanation:
Oxygen gas is made of molecules like the one this model shows. Which
chemical formula most likely describes oxygen gas?
A. OG
B. 00
C. 02
D. 0100
Plz what’s the answer to this
Answer: E
Explanation:hope this helps you out
what volume of 3.25m naoh would be required to form 1 mole of na3po4
Answer: 0.923 L
Explanation: The reaction between naoh and h3po4 is:
3naoh + h3po4 —> na3po4 + 3h20
this means it requires 3 mols of naoh to make na3po4
given the concentration, 3.25 M, the equation looks like this:
3.0 mol x (1.0L/ 3.25mol) = 0.923 L
4. One mole of oxygen contains 6.02 x 102 molecules. How many oxygen molecules are in
5.55 moles of oxygen gas?|
Answer:
3.34x10²⁴ molecules of oxygen
Explanation:
1 Mole of particles of any kind of gases or particles are always 6.022x10²³.
1 mole of electrons are 6.022x10²³ electrons
1 mole of any gas are 6.022x10²³ molecules
1 mole of oxygen are 6.022x10²³ molecules. Thus, 5.55 moles are:
3.34x10²⁴ molecules of oxygenHow do generators use magnets to create electricity
Answer:The properties of magnets are used to make electricity.
Explanation: Moving a magnet around a coil of wire, or moving a coil of wire around a magnet, pushes the electrons in the wire and creates an electrical current. Electricity generators essentially convert kinetic energy (the energy of motion) into electrical energy.
Please help me it due today at 11:00am please help me will mark the brainiest please
Describe the transfer of thermal energy as the ice cream melts and as it becomes solid again. In both situations, describe which objects are gaining and losing energy.
Answer:
Melting = endothermic, solid = exothermic
Explanation:
Ok so when ice cream melts, that requires heat, so it’s Endothermic. In order to melt it, it requires heat, heat is entering. When it becomes solid again, that is exothermic because it is losing heat in order to become cool again.
The chart shows the frequencies of certain colors of visible light. A 2 column table with 4 rows. The first column is labeled light with entries red, violet, green, orange. The second column is labeled frequency in hertz with entries 4.5 times 10 Superscript 14 baseline, 7.5 times 10 Superscript 14 baseline, 6.0 times 10 Superscript 14 baseline, 5.0 times 10 Superscript 14 baseline. Which colors will eject electrons when they strike sodium, which has a frequency threshold of 5.7 × 1014 Hz? violet and green red and orange violet only red, violet, green, and orange
Answer:
Violet only
Explination:
Violet is the only color that will eject electrons when it strikes sodium.
The colors that will eject electrons when there's a strike with sodium from the chart will be A. Violet and green.
ElectronsFrom the complete information, William made a chart in order to illustrate the result of the experiment that was made with the photoelectric effect.
In this case, the colors that will eject electrons when they strike sodium, with the frequency threshold will be violet and green.
This was gotten from the result that the frequencies of light were lower than the frequency threshold.
Learn more about electrons on:
https://brainly.com/question/860094
What is the molarity of calcium bicarbonate if 9.52 mL of 1.20 M HNO3 is required in a titration to neutralize 50.0 mL of a solution of Ca(HCO3)2?
The molarity of calcium bicarbonate if 9.52 mL of 1.20 M HNO3 is required in a titration to neutralize 50.0 mL of a solution of Ca(HCO3)2 is 0.228M.
HOW TO CALCULATE MOLARITY:
The molarity of a substance in a titration experiment can be calculated by using the following formula:C1V1 = C2V2
Where;
C1 = concentration of acid (M)V1 = initial volume of acid (mL)C2 = concentration of base (M)V2 = volume of the base (mL)According to this question;
V1 = 9.52mlV2 = 50.0mlC1 = 1.20MC2 = ?1.20 × 9.52 = C2 × 50
11.424 = 50C2
C2 = 11.424 ÷ 50
C2 = 0.228M
Therefore, the molarity of calcium bicarbonate if 9.52 mL of 1.20 M HNO3 is required in a titration to neutralize 50.0 mL of a solution of Ca(HCO3)2 is 0.228M.Learn more at: https://brainly.com/question/3003621?referrer=searchResults
A reaction of 2.00 ml of nitric acid and excess sodium hydroxide was carried out in
an lae calorimeter. It resulted in a change in volume of the ice/water mixture of
0.217 mL in an Ice calorimeter. The enthalpy of neutralization of nitric acid is -56.3
kJ/mol, density of Ice - 0.917 g/mL, density of water at the 0°C -1.00 g/ml, and
the enthalpy of fusion for ice - 333 J/g. Calculate the molarity of nitric acid.
-1.42 x 10-3M
-4.49 M
-7.09 M
-6.07 x 10-3M
-6.33 x 10-3M
A sample of 7.4 L of NH3 gas at 22 ∘C and 735 torr is bubbled into a 0.50-L solution of 0.35 M HCl. Assuming that all the NH3 dissolves and that the volume of the solution remains 0.50 L, calculate the pH of the resulting solution.Kb for Nh3=1.8x10-5
Answer:
pH = 9.11
Explanation:
First, using gas law, we will determine the moles of NH3 bubbled. Then, with moles of HCl we can determine how many NH4⁺ are produced. As last, using H-H equation for bases we can find pOH and pH of the solution:
Moles NH3:
PV = nRT
P = pressure: 743 torr * (1atm / 760torr) = 0.9776atm
V = volume: 7.4L
n = Moles. Our incognite
R = Gas constant: 0.082atmL/molK
T is absolute temperature: 273.15K + 22°C = 295.15K
PV / RT = n
0.9776atm*7.4L / 0.082atmL*295.15K = 0.30 moles of NH3
Moles HCl:
0.50L * (0.35mol / L) = 0.175 moles of HCl
Based on the reaction:
NH3 + HCl → NH4⁺ + Cl⁻
All HCl added is producing NH₄⁺ = 0.175 moles NH₄⁺
Moles NH₃: 0.30moles NH3 - 0.175 moles = 0.125 moles NH₃
H-H equation for bases is:
pOH = pKb + log [BH+] / [B]
Where pKb = -log Kb = 4.74
[BH+] could be taken as moles of NH4+ = 0.175 mol
[B] are moles of NH3 = 0.125 mol
pOH = pKb + log [BH+] / [B]
pOH = 4.74 + log [0.175mol] / [0.125mol]
pOH = 4.89
pH = 14-pOH
pH = 9.11
The work done to compress a gas is 83.0 J. As a result, 27.0 J of heat is given off to the surroundings. Calculate the change in energy of the gas.
Answer:
ΔU° = 56.0 J
Explanation:
Step 1: Given data
Work done to compress the gas (w): 83.0 J (When work is done on the gas, w is positive).Heat given off to the surroundings (q): -27.0 J (When heat is released to the surroundings, q is negative)Step 2: Calculate the change in the internal energy of the gas (ΔU°)
The internal energy of a gas is the energy contained within it. We can calculate it using the following expression.
ΔU° = q + w
ΔU° = -27.0 J + 83.0 J
ΔU° = 56.0 J
How many moles of NaCl , if mixed with excess Pb2+ ions in solution, would be needed to form 45.5 g of PbCl2 ?
The number of mole of NaCl needed to react with excess Pb²⁺ to produce 45.5 g of PbCl₂ is 0.328 mole
We'll begin by calculating the number of mole in 45.5 g of PbCl₂. This can be obtained as follow:
Mass of PbCl₂ = 45.5 g
Molar mass of PbCl₂ = 207 + (35.5×2) = 278 g/mol
Mole of PbCl₂ =?Mole = mass / molar mass
Mole of PbCl₂ = 45.5 / 278
Mole of PbCl₂ = 0.164 mole Finally, we shall determine the number of mole of NaCl needed to produce 0.164 mole (i.e 45.5 g) of PbCl₂. This can be obtained as follow:2NaCl + Pb²⁺ —> PbCl₂ + 2Na⁺
From the balanced equation above,
2 moles of NaCl reacted to produce 1 mole of PbCl₂
Therefore,
Xmol of NaCl will react to produce 0.164 mole of PbCl₂ i.e
Xmol of NaCl = 2 × 0.164
Xmol of NaCl = 0.328 mole
Thus, the number of mole of NaCl needed for the reaction is 0.328 mole
Learn more: https://brainly.com/question/18761815
After an afternoon party, a small cooler full of ice is dumped onto the hot ground and melts. If the cooler contained 6.60 kg of ice and the temperature of the ground was 42.5 °C, calculate the energy that is required to melt all the ice at 0 °C. The heat of fusion for water is 80.0 cal/g.
Answer:
The quantity of heat required to melt all the ice at 0°C is 2.21 * 10⁶ J
Explanation:
Latent heat of fusion is the heat absorbed by a unit mass of a given solid at its melting point that completely converts the solid to a liquid at the same temperature. Its unit is Joules/kg or Joules/g.
1 calorie = 4.184 Joules
Therefore , 80.0 cal/g = 80.0 cal/g * 4.184 J/cal = 334.72 J/g
1 g = 0.001 kg; Heat of fusion in J/kg = 334.72 J/g * 1g /0.001 kg = 3.35 * 10⁵ J/kg
Quantity of heat, Q = mass * latent heat of fusion of ice
quantity of heat required = 6.60 kg * 3.35 * 10⁵ J/kg
Quantity of heat required = 2.21 * 10⁶ J
Therefore, the quantity of heat required to melt all the ice at 0°C is 2.21 * 10⁶ J
A 221 mL cup of whole milk contains about 39 mg of cholesterol. Express the cholesterol concentration of the milk in kilograms per cubic meter (kg/m3)
Answer:
0.1765 Kg / m3
Explanation:
Mass of cholesterol = 39mg
Volume = 221mL
The concentration is given as; Mass/ Volume
Concentration = 39 / 221 = 0.1765 mg /mL
The relationship between mg / mL and Kg / m3 is;
1 mg / mL = 1 Kg / m3
This means that;
0.1765 mg /mL = 0.1765 Kg / m3
Calculate the amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C.
Answer:
The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
Between heat and temperature there is a direct proportional relationship. The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
c= 4.184 [tex]\frac{J}{g*C}[/tex]m= 32 gΔT= Tfinal - Tinitial= 22°C - 8°C= 14°CReplacing:
Q= 32 g* 4.184 [tex]\frac{J}{g*C}[/tex] *14 °C
Solving:
Q= 1,874.432 J
The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J
Total enthalpy of formation of reactants and products, enthalpy of reaction. Cmon goons you’ll be rewarded handsomely
Answer:
am going to work it out
Explanation:
i am going to work it out and then tell you the answer ok
Which of the following statements correctly describes the function of cell parts?
A. The cell membrane determines which type of cell will develop.
B. The nucleus contains all the nutrients that the cell needs.
C. The mitochondria are the power plants of the cell.
D. The genes contain hemoglobin.
The statements correctly describes the function of cell parts is the mitochondria are the power plants of the cell. Therefore, option C is correct.
What do you mean by the mitochondria ?The cytoplasm of a cell contains tiny structures (fluid that surrounds the cell nucleus). The majority of a cell's energy is produced by mitochondria, which also have unique genetic material distinct from that present in the nucleus.
Oxidative phosphorylation, which produces ATP using the energy generated during the oxidation of the food we ingest, is the traditional function of mitochondria.
For the majority of biochemical and physiological activities, including growth, mobility, and equilibrium, ATP is used as the main energy source in turn.
Thus, option C is correct.
To learn more about the mitochondria, follow the link;
https://brainly.com/question/10688306
#SPJ6
Elements in the same period have _____ in common?
-
Answer:
The elements that have the same number of energy levels or the orbitals.
Explanation:
They have he same number -- energy levels
Demonstrate how you can prepare 250ml 0.25M hydrogen peroxide from a solution of 20g/100ml of hydrogen peroxide.
To prepare 250 ml 0.25 M hydrogen peroxide, 10.63 ml of 20g/100 ml hydrogen peroxide has been taken and made up the volume to 250 ml.
The dilution of the sample can be prepared with the help of expression:
M1V1 = M2V2
M1 = molarity of the concentrated solution
V1 = volume of concentrated solution
M2 = molarity of diluted solution
V2 = volume of diluted solution.
The molarity of concentrated solution has been:
Molarity = [tex]\rm \dfrac{weight}{molecular\;weight}\;\times\;\dfrac{1000}{Volume\;(ml)}[/tex]
The 20g/100 ml Hydrogen peroxide has molarity:
Molarity = [tex]\rm \dfrac{20}{34.0147}\;\times\;\dfrac{1000}{100}[/tex]
Molarity of Hydrogen peroxide = 5.879 M
The volume of 5.879 M hydrogen peroxide is required to prepare 0.25 M hydrogen peroxide has been:
Volume of Hydrogen peroxide (20g/100 ml) [tex]\times[/tex] 5.879 = 250 ml [tex]\times[/tex] 0.25 M
Volume of Hydrogen peroxide (20g/100 ml) = 10.63 ml.
To prepare 250 ml 0.25 M hydrogen peroxide, 10.63 ml of 20g/100 ml hydrogen peroxide has been taken and made up the volume to 250 ml.
For more information about the preparation of solution, refer to the link:
https://brainly.com/question/24159217