Answer:
0.00033333333
Explanation:
A painter on a scaffold drops a 1.25 kg can of paint from a height of 5.00 m.
a) What is the kinetic energy of the can when the can is at a height of 3.00 m?
b) With what speed will the can hit the ground? (Neglect air resistance)
Answer:
(a) The kinetic energy of the can when the can is at a height of 3.00 m.
(b) The speed with which the can will hit the ground is 9.9 m/s
Explanation:
(a) Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.
Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed.
Kinetic energy is represented by the following formula:
Ec = ½ mv²
Where Ec is kinetic energy, which is measured in Joules (J), m is mass measured in kilograms (kg), and v is velocity measured in meters over seconds (m/s).
On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.
Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity. Then for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:
Ep = m g h
Where Ep is the potential energy in joules (J), m is the mass in kilograms (kg) is h the height in meters (m) and g is the acceleration of fall in m/s² (approximately 9.8 m/s²)
Energy is neither created nor destroyed, but only transforms from one state to another. This principle also extends to mechanical energy, so that in an isolated system, the sum of kinetic and potential energies between two instants of time remains constant:
½ m*v1² + m*g*h1= ½ m*v2² + m*g*h2
where v1 and h1 are the initial speed and height and v2 and h2 the final speed and height.
In this case:
v1= 0 m/sh1= 5 mv2= ?h2= 3 mReplacing:
½ m*0² + m*g*5= ½ m*v2² + m*g*3
Solving:
m*g*5= ½ m*v2² + m*g*3
The mass m appears in all terms, being able to simplify:
g*5= ½ v2² + g*3
Solving for v2:
[tex]v2=\sqrt{\frac{g*5-g*3}{\frac{1}{2} } }[/tex]
being g= 9.8 m/s²:
v2= 6.26 m/s
The speed at 3 meters height is 6.26 m/s
Then the kinetic energy is calculated as:
Ec = ½ mv²
Ec = ½ 1.25 kg* (6.26 m/s)²
Ec= 24.49 J
The kinetic energy of the can when the can is at a height of 3.00 m.
(b) You know:
½ m*v1² + m*g*h1= ½ m*v2² + m*g*h2
where v1 and h1 are the initial speed and height and v2 and h2 the final speed and height.
In this case:
v1= 0 m/sh1= 5 mv2= ?h2= 0 mReplacing:
½ m*0² + m*g*5= ½ m*v2² + m*g*0
Solving:
m*g*5= ½ m*v2²
g*5= ½ v2²
[tex]v2=\sqrt{\frac{g*5}{\frac{1}{2} } }[/tex]
being g= 9.8 m/s²:
v2= 9.9 m/s
The speed with which the can will hit the ground is 9.9 m/s
Table 1
Ball Na
dom
dom
n. Pas
1). Pas
1
4.3
5.86-10
5.91-10
5.89-10
8.09.10
4.91
3
6.02-10
6.32-10
5.24 10
14
5.91-10
6.98 to
8.07.10
6.41 10
5,8910
5.99-10
638-10
5.38.10
4.16
5
5.43
At 20 °C, the density of the ball substance is p = 2,2 10kg/m: fluid is p = 0,91-10kg/m
Distance between two marks is? - 1 m
Answer:
the answer is c.
Explanation:
A doctor examines a mole with a 15.0 cm focal length magnifying glass held 12.4 cm from the mole.
a. What is its magnification?
b. Where is the image?
c. How big is the image of a 5.00 mm diameter mole?
Answer:
a. Magnification = 6.1
b. The image formed is virtual, and on the same side of the lens as the object.
c. Image size = 119.8 squared millimetres
Explanation:
Magnification = [tex]\frac{Image distance}{Object distance}[/tex]
But, focal length, f = 15.0 cm, and object distance, u = 12.4 cm. Let the image distance be represented by v.
a. Applying the lens formula, we have;
[tex]\frac{1}{f}[/tex] = [tex]\frac{1}{u}[/tex] + [tex]\frac{1}{v}[/tex]
[tex]\frac{1}{15}[/tex] = [tex]\frac{1}{12.4}[/tex] + [tex]\frac{1}{v}[/tex]
[tex]\frac{1}{v}[/tex] = [tex]\frac{1}{15}[/tex] - [tex]\frac{1}{12.4}[/tex]
= -[tex]\frac{13}{930}[/tex]
v = -75.1538
The image distance, v = -75.2 cm
Magnification = [tex]\frac{75.2}{12.4}[/tex]
= 6.0645
Magnification = 6.1
b. The image formed is virtual, and on the same side of the lens as the object.
c. Given that diameter of mole = 5.00 mm.
Its radius = [tex]\frac{diameter}{2}[/tex] = [tex]\frac{5.0}{2}[/tex]
= 2.5 mm
Thus, the area of the mole would be;
A = [tex]\pi[/tex][tex]r^{2}[/tex]
= [tex]\frac{22}{7}[/tex] x [tex](2.5)^{2}[/tex]
= 19.643
A = 19.64 square millimetres.
Thus, the size of the image can be determined by;
Magnification = [tex]\frac{Image size}{Object size}[/tex]
Image size = Magnification x object size
= 6.1 x 19.64
= 119.804
The size of the image is 119.8 squared millimetres.
Can someone please answer how to convert mass into weight?
Answer:
To find the weight of something, simply multiply its mass by the value of the local gravitational field, and you get a result in newtons (N). For example, if your mass is 50 kg (about 110 pounds), then your weight is (50) (9.8). The point that must be overwhelmingly emphasized is that weight is a force.
Explanation:
what is the speed of rocket that travels 9km in 10 seconds
Answer:
900
Explanation:
v = s / t = 9000m / 10 s = 900m/s
Explanation:
The speed of a rocket that travel 9km in 10 second is 900
Which of the following is a self-fulfilling prophecy?
mutual views that are often held by conflicting people
shared goals that override differences among people and require their cooperation
a perceived incompatibility of actions, goals, or ideas
a belief that leads to its own fulfillment
Answer:
last one
Explanation:
Consider a person standing in an elevator that is moving at a constant velocity down. The upward normal force N exerted by the elevator floor on the person is Select one: a. smaller than the downward force of gravity on the person. b. identical to the downward force of gravity on the person. c. larger than the downward force of gravity on the person.
Answer:
b. identical to the downward force of gravity on the person.
Explanation:
For an object in an elevator,
F = mg - ma (g > a)
But since the velocity is uniform, a = 0.
Then,
F = mg - 0
F = mg
This is the actual weight of the object.
The object does not feel weightless, so that its actual weight can be measured during the downward motion of the elevator with uniform velocity.
Thus, the upward normal force, N, exerted by the elevator floor on the person is identical to the downward force of gravity on the person.
2 Magnetism comes from the word
A Magnesia
B Magnentia
C Magnesium
D Magenta
E None of the above
Answer:
A Magnesia
Explanation:
The word magnetism comes from the word Magnesia, which is the name for a region in Asia Minor, where fragments of Fe3O4 ore (magnetite) were found, which attracts other metal objects.
Magnetism is a physical phenomenon by which we describe the attractive or repulsive force between materials.
This phenomenon has been known for thousands of years.
4. A substance has a density of 0.79 g/cm'. It is soluble in water. List all the possibilities of what it might be How could you determine the actual identity?
Answer:
See explanation
Explanation:
Given that the density of the unknown substance is 0.79 g/cm3 and is soluble in water, the possible substances it could be are;
i) t-butanol
ii) ethanol
iii) 2-propanol
iv) acetone
However, the actual identity of the unknown substance can be obtained by carrying out a boiling point test. The four substances listed above have different boiling points. Hence the boiling point of the unknown substance ultimately discloses its identity.
A diffraction grating with 270 lines per mm is used in an experiment to study the visible spectrum of a gas discharge tube. 1. At what angle from the beam axis will the fourth order peak occur if the tube emits light with wavelength of 665.0 nm?2. At what angle will the second order peak occur?
Answer:
1) θ = 45.91°
2) θ = 21.04°
Explanation:
We are given;
Wavelength; λ = 665 nm = 6.65 × 10^(-7) m.
Distance between slits; d = 1mm/270 = 1/270 mm = (1/270) × 10^(-3) m
1) To find the angle, we will use the formula;
d sin θ = mλ
Where m is the order of peak which in this question is 4.
Thus, we have;
sin θ = mλ/d
sin θ = (4 × 6.65 × 10^(-7))/((1/270) × 10^(-3))
sin θ = 0.7183
θ = sin^(-1) 0.7183
θ = 45.91°
2) Similarly, d sin θ = mλ
Where m is the order of peak which in this question is 2. Thus;
sin θ = (2 × 6.65 × 10^(-7))/((1/270) × 10^(-3))
sin θ = 0.3591
θ = sin^(-1) 0.3591
θ = 21.04°
which three statements about gravity in the formation of the solar system are true
The answer is A, B, D.
Answer:
The answer is A, B, D.
Explanation:
ap3x verified
Convert 451 milliliters to fluid
ounces. Round your answer to 2
decimal places. **There are 29.57
milliliters in 1 fluid ounce***
Answer:
451 milliliters equals 15.25 fluid ounces
Explanation:
The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three.
To solve a direct rule of three, the following formula must be followed:
a ⇒ b
c ⇒ x
So: [tex]x=\frac{c*b}{a}[/tex]
The direct rule of three is the rule applied in this case where there is a change of units.
In this case, the rule of three can be applied in the following way: if there are 29.57 milliliters in 1 fluid ounce, in 451 milliliters how many fluid ounces are there?
[tex]fluid ounces=\frac{451 mL*1 fluid ounce}{29.57 mL}[/tex]
fluid ounces= 15.25
451 milliliters equals 15.25 fluid ounces
what are the scales of measurement of temperature?
Answer:
There are three temperature scales in use today, Fahrenheit, Celsius and Kelvin. Fahrenheit temperature scale is a scale based on 32 for the freezing point of water and 212 for the boiling point of water, the interval between the two being divided into 180 parts
Answer: I have don't understand this question
Explanation:
The CEO, ellen misk, left her martian office but accidentally left a cylindricall can of coke (3.1 inches in diameter, 5.42 inches in height) on her desk. If the can exerts a pressure of 510 Pascals, what is the specific gravity of the can?
Answer:
Specific Gravity = 0.378
Explanation:
First, we will find the force exerted by the can on the table. This force will be equal to the weight of the can:
Pressure = Force/Area = Weight/Area
Weight = Pressure*Area
where,
Area = πdiameter²/4 = π[(3.1 in)(0.0254 m/1 in)]²/4 = 4.8 x 10⁻³ m²
Weight = (510 N/m²)(4.8 x 10⁻³ m²)
Weight = 2.48 N
Now, the weight is given as:
Weight = mg
2.48 N = m(9.8 m/s²)
m = (2.48 N)/(9.8 m/s²)
m = 0.25 kg
Now, we calculate volume of can:
Volume = (Area)(Height) = (4.8 x 10⁻³ m²)(5.42 in)(0.0254 m/1 in)
Volume = 6.6 x 10⁻⁴ m³
Hence, the density of can will be:
Density of Can = m/Volume = 0.25 kg/6.6 x 10⁻⁴ m³
Density of Can = 378.32 kg/m³
So, the specific gravity of Can will be:
Specific Gravity = Density of Can/Density of Water
Specific Gravity = (378.32 kg/m³)/(1000 kg/m³)
Specific Gravity = 0.378
answer? physics Q for 3rd secondary..
Answer:
The 300 Ohm resistor
Explanation:
They are in series, so the current has to be the same in both. P = I^2R, so with the same current, the larger resistor dissipates more power.
A 235-kg merry-go-round at the Great Escape in Lake George is in the shape of a uniform, solid, horizontal disk of radius 1.50 m. It is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force would have to be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.400 rev/s in 2.00 s?
Answer:
The constant force to be exerted on the rope is 221.55 N
Explanation:
Given;
mass of the merry, m = 235 kg
radius, r = 1.5 m
number of revolution per second, = 0.4 rev/s
time of motion, t= 2.00 s
The angular acceleration is given by;
[tex]\alpha = \frac{0.4 \ rev}{s} *\frac{2\pi \ rad}{rev} *\frac{1}{2.0\ s} = 1.257 \ rad/s^2[/tex]
Torque is given by;
τ = F.r
Also torque in uniform solid disk is given by;
τ = ¹/₂mr²α
Thus, equating the two;
F.r = ¹/₂mr²α
F = ¹/₂mrα
F = ¹/₂(235)(1.5)(1.257)
F = 221.55 N
Therefore, the constant force to be exerted on the rope is 221.55 N
Coach ulcer paces the sidelines. Sarting at the 30 yd. line (A), he moves to the 10 yd. line (B), back to the 50 yd. line (C) and finally to the 20yd. Line (D) in 200 seconds. Determine his average speed and velocity.
Answer:
See the answer below
Explanation:
Average speed = total distance traveled/total time taken
In order to determine the total distance traveled by the coach, consider the attached image.
Distance covered:
30 yd. line to 10 yd. line (A to B)= 20 yds
10 yd. line to 50 yd. line (B to C) = 40 yds
50 yd. line to 20 yd. line (C to D) = 30 yds
Total distance covered = 20 + 40 + 30 = 90 yds
Time taken = 200 seconds
Average Speed = 90/200 = 0.45 yd/s
Velocity = speed with direction
Hence,
His Velocity = 0.45 yd/s to the left of his starting point.
A ball thrown vertically upward returns to the thrower 25s later determine the speed with which it was thrown
25/2=12.5s
12.5*9.8=122.5 m/s
ONLY ANSWER IF YOU PLAY ADOPT ME ON ROB.LOX!!! tell me your best pet and user name in your answer plz.
READ!!!!! p.s. i have a fly ride T rex and more! also, STAY ON THE PAGE SO I COULD RESPOND AND WE COULD PLAY! yay!!
Answer:
bruh
Explanation:
this is to help people not play games lolllll
It is more difficult to climb a vertical staircasethan a slanted one give reason
Answer:
The reason is similar to the reason why it is difficult to roll an object on a surface with a positive incline than rolling it on the ground
The more the path becomes vertical, the more force we have to apply to oppose the force of gravity
but when we are moving horizontally, we don't have to move against the gravity and hence, it is less difficult than going vertically upwards
You serve a tennis ball of mass 60g at a speed of 50
m/s, what is the impulse exerted on the ball? ( ball starts from rest )
Answer:
[tex]J = 3~Kg.m/s[/tex]
Explanation:
Impulse and Momentum
The impulse-momentum theorem states that the change in momentum of an object equals the impulse applied to it.
The equation can be written as follows:
[tex]J =\Delta p = p_2-p_1[/tex]
Where:
J = Impulse
p2 = Final Momentum
p2 = Initial Momentum
The momentum can be calculated as:
p = m.v
Where m is the mass of the object and v is the velocity.
The tennis ball with mass m=60 g = 0.06 Kg was served from rest (v1=0) to v2=50 m/s. The change in momentum is:
[tex]\Delta p = 0.06Kg~50~m/s-0[/tex]
[tex]\Delta p = 3~Kg.m/s[/tex]
Thus the impulse is:
[tex]\marhbf{J = 3~Kg.m/s}[/tex]
For motion maps that illustrate accelerated motion, what does a new level indicate?
change in acceleration or direction
constant acceleration and direlon
increased velocity
decreased velocity
оо
Answer:
A. change in acceleration or direction
Explanation:
A motion map can be defined as the graphical representation of the acceleration, velocity and position of a body or an object at specific intervals (period of time) or time readings.
For motion maps that illustrate accelerated motion, a new level indicates a change in acceleration or direction.
Acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time. Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate an object’s acceleration.
Mathematically, acceleration is given by the equation;
[tex]Acceleration (a) = \frac{final \; velocity - initial \; velocity}{time}[/tex]
Additionally, acceleration is a vector quantity because it has both magnitude and direction.
Answer:
A
Explanation:
EDG 2021
What is the answer to this question
Answer:
0.11 m/s
Explanation:
From the question given above, the following data were obtained:
Initial displacement (d1) = 1.09 m
Final displacement (d2) = 2.55 m
Time (t) = 12.8 s
Average velocity =?
Next, we shall determine the total displacement (i.e change in displacement). This can be obtained as follow:
Initial displacement (d1) = 1.09 m
Final displacement (d2) = 2.55 m
Total displacement = d2 – d1
Total displacement = 2.55 – 1.09
Total displacement = 1.46 m
Finally, we shall determine the average velocity of the beetle. This can be obtained as follow:
Total Displacement = 1.46 m
Total time (t) = 12.8 s
Average velocity =?
Average velocity = Total Displacement / Total time
Average velocity = 1.46/12.8
Average velocity = 0.11 m/s
Thus, the average velocity of the beetle is 0.11 m/s
(ii) In two parts of the graph in Figure 1 the forces are balanced.
State the letters of the two parts of the graph where the horizontal forces
acting on the car are balanced.
121
part
and part
this is the graph:
Answer:
Hii I m Indian.......♥️
What is the voltage drop across the 10.0 2 resistor?
10.00
120.0 V
20.00
30.00
Answer: 20.0V
Answer:
20.0V
SANA MAKATULONG
The voltage drop across the 10.0-ohm resistor would be 20.0 volt.
What is resistance?Resistance is the obstruction of electrons in an electrically conducting material.
The mathematical relation for resistance can be understood with the help of the empirical relation provided by Ohm's law.
V=IR
For calculating equivalent resistance in series combination.
Re = R1 + R2 + R3
For the given problem the total resistance of the circuit would be as all the three resistors are connected in the series combination.
Re= 10+20+30
Re=60 ohm
As given in the figure all the resistance are connected in the series combination therefore the current flowing through them would be the same.
For the given problem we have to design and construct a circuit that has two resistors connected in series.
By using Ohms law
V=IR
120 = 60×I
I = 2 ampere
Given that we have a 120 V battery, that will produce a current of 2 Ampere
By using Ohm's law we can calculate the voltage drop across a 10-ohm resistor
V=IR
=2×10
= 20 volt
Thus, the voltage drop across the 10.0-ohm resistor comes out to be 20.0 volt.
Learn more about resistance from here
brainly.com/question/14547003
#SPJ2
A block slides down an inclined plane from rest. Initially the block is at 4.5m above the ground. Find the speed of the block when it is 1.5m above the ground. 1) 7.7m/s 2) 9.4m/s 3) 5.4m/s 4) 3.2m/s
Since, no external force is acting , so the system is in equilibrium .
Initial total energy = Final total energy
[tex]mg(4.5) = mg(1.5) + \dfrac{mv^2}{2}\\\\\dfrac{v^2}{2}=3\times g \\\\v^2=3\times 9.8\times 2\\\\v = \sqrt{58.8}\ m/s\\\\v = 7.67 \ m/s[/tex] ( Here , g = acceleration due to gravity = 9.8 m/s² )
Therefore, option 1) is correct.
Hence, this is the required solution.
2.5kg of water (C = 4189 J/(Kg x K)) is heated from T1 = 13.5 C to T2 = 22.5 C
To the heated water 0.5 kg of water at T3= 20 C is added. What is the final temperature of the water in Kelvin?
Answer:
338 K
Explanation:
[tex]m_{1}[/tex] = 2.5 kg, c = 4189 J/(kg K), [tex]T_{1}[/tex] = 13.5 [tex]^{o} C[/tex], [tex]T_{2}[/tex] = 22.5 [tex]^{o} C[/tex]
[tex]m_{2}[/tex] = 0.5 kg, [tex]T_{3}[/tex] = 20 [tex]^{o} C[/tex]
Heat loss by hotter water = heat gained by cooler water
[tex]m_{1}[/tex]cΔT = [tex]m_{2}[/tex]cΔT
[tex]m_{1}[/tex]c([tex]T_{2}[/tex] - [tex]T_{1}[/tex]) = [tex]m_{2}[/tex]c([tex]T_{4}[/tex] - [tex]T_{3}[/tex])
2.5 x 4189 x (22.5 - 13.5) = 0.5 x 4189 x ([tex]T_{4}[/tex] - 20)
2.5 x 4189 x 9 = 2094.5 ([tex]T_{4}[/tex] - 20)
94252.5 = 2094.5[tex]T_{4}[/tex] - 41890
94252.5 + 41890 = 2094.5[tex]T_{4}[/tex]
136142.5 = 2094.5[tex]T_{4}[/tex]
[tex]T_{4}[/tex] = [tex]\frac{136142.5}{2094.5}[/tex]
= 65
[tex]T_{4}[/tex] = 65 [tex]^{o} C[/tex]
But,
θ K = 273 + θ[tex]^{o} C[/tex]
= 273 + 65
= 338
The final temperature of the water is 338 K.
The value of the temperature in kelvin is 338 K.
The given parameters;
mass of the initial water, m = 2.5 kgspecific heat capacity of water, C = 4189 J/kg.Kinitial temperature of water, T₁ = 13.5 ⁰Cfinal temperature of the water, T₂ = 22.5 ⁰Cmass of the final water, m = 0.5 kgtemperature of the final water, = 20 ⁰CThe final temperature of the water is calculated as follows as shown below;
[tex]m_1C\Delta \theta_1 = m_2C\Delta \theta_2\\\\m_1\Delta \theta_1 = m_2\Delta \theta_2\\\\2.5(22.5 - 13.5) = 0.5(t_4- 20)\\\\22.5 = 0.5t_4 - 10\\\\0.5t_4 = 32.5\\\\t_4 = \frac{32.5}{0.5} \\\\t_4 = 65 \ ^0C[/tex]
The value of the temperature in kelvin is calculated as;
[tex]t_4 = 273 + 65\\\\t_4 = 338 \ K[/tex]
Learn more here:https://brainly.com/question/14854725
a current of 200 mA through a conductor converts 40 joules of electrical energy into heat in 30 seconds determine the p
otential drop across the conductor
Answer:
ou have I=200mA, E=40J, t=30s, and you want to find the voltage drop.
First, you should know that P=V⋅I , so V=PI
Second, you have the amount of energy converted in a certain amount of time, so E=P⋅t
So, find the power and use it to find the voltage drop.
this works , but i thought energy was defined by W = P * t whitch would then be P = W/t
If force remains the same, and the mass of an object increases, what happens to the acceleration?
Answer:
Decreases
Explanation:
Force= mass * acceleration
If the mass increases but force stays the same then the acceleration would have to decrease to maintain the same force
A household refrigerator consumes electrical energy at the rate of 200 W. lf electricity costs 5 k per kWh, calculate the cost of operating the appliance for 30 days
Answer:
= 720000 [k]
Explanation:
The cost is equal to 5 [$/kW-h], kilowatt per hour, this value should be multiplied by the power, and then by the time.
[tex]5[\frac{k}{kw*h}]*200[w]*30[day]*24[\frac{h}{day} ][/tex]
= 720000 [k]