Answer:
the longer wavelength is 1.2552 cm
Explanation:
given that
beat frequency [tex]f_{b}[/tex] = 100 MHz = 100 × 10⁶ Hz
λ₁ = 1.250 cm = 0.0125 m
we know that beat frequency [tex]f_{b}[/tex] of two simultaneous frequencies f₁ and f₂ is expressed as;
[tex]f_{b}[/tex] = | f₁ - f₂ |
we know that microwave travels at a speed of light, so for any electromagnetic wave traveling at speed of light c with wavelength λ; frequency is;
f = c / λ
hence our beat frequency [tex]f_{b}[/tex] becomes
[tex]f_{b}[/tex] = c ( 1/λ₁ - 1/λ₂)
to find the longer wavelength, λ₂
[tex]f_{b}[/tex] = c ( 1/λ₁ - 1/λ₂)
divide both side by c
[tex]f_{b}[/tex] /c = ( 1/λ₁ - 1/λ₂)
1/λ₂ = 1/λ₁ - [tex]f_{b}[/tex] /c
λ₂ = [1/λ₁ - [tex]f_{b}[/tex] /c ]⁻¹
so we substitute in our values
we know that speed of light c = 3 × 10⁸
so
λ₂ = [ (1/0.0125) - (100 × 10⁶ /3 × 10⁸) ]⁻¹
λ₂ = [80 - 0.3333 ]⁻¹
λ₂ = [79.6667 ]⁻¹
λ₂ = 0.01255 m
λ₂ = 0.012552 × 100 cm
λ₂ = 1.2552 cm
Therefore, the longer wavelength is 1.2552 cm
A typical ceiling fan running at high speed has an airflow of about 1.85 ✕ 10^3 ft^3/min, meaning that about 1.85 ✕ 10^3 cubic feet of air move over the fan blades each minute.
Determine the fan's airflow in m^3/s.
Answer:
0.83 m³/s
Explanation:
The speed of the airflow is given as;
1.85 x 10³ ft³/min
Now we are to express this unit in m³/s
1ft = 0.3m
60s = 1 min
So;
1.85 x 10³ x ft³ x [tex]\frac{1}{min}[/tex] x [tex]\frac{(0.3m)^{3} }{ft^{3} }[/tex] x [tex]\frac{1min}{60s}[/tex]
= 0.83 m³/s
A block of mass m = 4.4 kg slides from left to right across a frictionless surface with a speed vi= 8.4 m/s It collides in a perfectly elastic collision with a second block of mass M that is at rest. After the collision, the 4.4-kg block reverses direction, and its new speed is 2.5 m/s What is V, the speed of the second block after the collision?
Answer:
[tex]v_{2'}=8.1\:\mathrm{m/s}[/tex]
Explanation:
In a perfectly elastic collision, the total kinetic energy of the system is maintained. Therefore, we can set up the following equation:
[tex]\frac{1}{2}m_1{v_1}^2+\frac{1}{2}m_2{v_2}^2=\frac{1}{2}m_1{v_{1'}}^2+\frac{1}{2}m_2{v_{2'}}^2[/tex]
Since the second block was initially at rest, [tex]\frac{1}{2}m_2{v_2}^2=0[/tex].
Plugging in all given values, we have:
[tex]\frac{1}{2}m_1{v_1}^2=\frac{1}{2}m_1{v_{1'}}^2+\frac{1}{2}m_2{v_{2'}}^2,\\\\\frac{1}{2}\cdot4.4\cdot8.4^2=\frac{1}{2}\cdot 4.4 \cdot (-2.5)^2+\frac{1}{2}\cdot 4.4\cdot {v_{2'}}^2,\\\\{v_{2'}}=\sqrt{64.31},\\\\{v_{2'}}\approx\fbox{$8.1\:\mathrm{m/s}$}[/tex]..
Find the momentum of a 500,000 kg train that is stopped on the tracks?
a. O kg m/s
b. 250,000 kg m/s
c. 500,000 kg m/s
d. 16,000,000 kg m/s
Answer:
The answer should be A) 0m/s
Explanation:
It is stopped on the train tracks therefore it is not moving.
Please tell me if I am wrong because I'm not 100% sure on this. Hope it's right and that it helped you.
HURRY What happened when the speed was increased?
Particle A with charge q and mass ma and particle B with charge 2q and mass
mb, are accelerated from rest by a potential difference AV and subsequently
deflected by a uniform magnetic field into semicircular paths. The radii of the
trajectories by particle A and B are R and 3R, respectively. The direction of
the magnetic field is perpendicular to the velocity of the particle. Determine
their mass ratio?
What gases can CFC and HCFC refrigerants decompose into at high temperatures
Answer:
Hydrochloric and Hydrofluoric Acids.
What is the kinetic energy of a disk with a mass of 0.20 g and a speed of 15.8 km/s?
Answer:
0.025J
Explanation:
Kinetic energy = ½ × Mass × velocity²
0.20÷1000=0.0002
½ × 0.0002 × 15.8²=0.024964J
we had to drive 150 miles to the hotel we left at 1 p.m. and got there at 4 p.m. what is our average speed
Answer:
Our average speed was 50 mph
Explanation:
Constant Speed Motion
An object is said to travel at constant speed if the ratio of the distance traveled by the time taken is constant.
Expressed in a simple equation, we have:
[tex]\displaystyle v=\frac{d}{t}[/tex]
The distance we had to drive is d=150 miles. If we left at 1 p.m. and got to the hotel at 4 p.m. This means we took t=3 hours to get there.
The average speed is:
[tex]\displaystyle v=\frac{150\ miles}{3\ h}[/tex]
[tex]v=50\ mi/h[/tex]
Our average speed was 50 mph
Explain how momentum is determined and conserved.
ASAP!!
Explanation:
Momentum is conserved in the collision. Momentum is conserved for any interaction between two objects occurring in an isolated system.
Megan walks 1100\,\text m1100m1100, start text, m, end text to the left in 330\,\text s330s330, start text, s, end text. What was her average speed in \dfrac{\text m}{\text s} s m start fraction, start text, m, end text, divided by, start text, s, end text, end fraction?
Answer:
v = 3.34 m/s
Explanation:
Given that,
Distance, d = 1100 m
Time, t = 330 s
We need to find the average speed of the Megan. It is equal to the total distance divided by total time taken.
[tex]v=\dfrac{1100\ m}{330\ s}\\\\v=3.34\ m/s[/tex]
So, the average speed of Megan is 3.34 m/s.
Answer:
33.3
Explanation:
Two charges, +4 µC and +14 µC, are fixed 1 m apart, with the second one to the right. Find the magnitude and direction of the net force (in N) on a −5 nC charge when placed at the following locations.
Answer:
[tex]0.0018\ \text{N/C}[/tex] towards the right.
[tex]0.001\ \text{N/C}[/tex] towards the right.
Explanation:
[tex]q_1=4\ \mu\text{C}[/tex]
[tex]q_2=14\ \mu\text{C}[/tex]
[tex]Q=5\ \text{nC}[/tex]
[tex]r_1=r_2=0.5\ \text{m}[/tex]
Let [tex]Q[/tex] be placed at origin so [tex]q_1[/tex] becomes negative and [tex]q_2[/tex] becomes positive
Electric field is given by
[tex]E=\dfrac{kq_1Q}{r_1^2}+\dfrac{kq_2Q}{r_2^2}\\\Rightarrow E=\dfrac{kQ}{r^2}(q_1+q_2)\\\Rightarrow E=\dfrac{9\times10^{9}\times 5\times10^{-9}}{0.5^{2}}(-4\times10^{-6}+14\times10^{-6})\\\Rightarrow E=0.0018\ \text{N/C}[/tex]
The electric field halfway between the points is [tex]0.0018\ \text{N/C}[/tex] towards the right.
[tex]r_1=0.5\ \text{m}[/tex]
[tex]r_2=1+0.5=1.5\ \text{m}[/tex]
[tex]E=9\times 10^9\times 5\times 10^{-9}(\dfrac{4\times 10^{-6}}{0.5^2}+\dfrac{14\times 10^{-6}}{1.5^2})\\\Rightarrow E=0.001\ \text{N/C}[/tex]
The electric field halfway between the points is [tex]0.001\ \text{N/C}[/tex] towards the right.
h. The length of the shadow is different in evening and in the day. Justify
the shadows are exactly the same length in the morning as they are in the evening.
is so obvious it’s that when the sun is low you get long shadows and when the sun is up in the sky like in the noon the shadow is shorter.
Do it in order.
from smallest to largest
Answer:
The earth, The sun, the solar system and the milky way.
Bob needs to accelerate a 4 kg box at 2 m/s2. How much force does he need to use?
Answer:
8 N
Explanation:
From Newtons second law of motion, we have;
F = ma
where: F is the force applied, m is the mass of the object, and a is its acceleration.
From the given question: mass of box = 4 kg and acceleration of the box = 2 m/[tex]s^{2}[/tex], then;
F = 4 x 2
= 8
F = 8 N
The amount of force to be used is 8 N.
The gauge pressure at the bottom of a cylinder of liquid is pg = 0.40 atm. The liquid is poured into another cylinder with twice the radius of the first cylinder. What is the gauge pressure at the bottom of the second cylinder?
Answer:
Explanation:
gauge pressure due to a liquid column of density d and height h is given by the following expression .
P = hdg
The pressure depends upon height of liquid column and not on the cross sectional area .
In first cylinder .
gauge pressure = .40 atm
hdg = .40 atm
cross sectional area of cylinder = π r²
The radius of second cylinder is twice of the first , cross sectional area will be 4 times .
The volume remains the same when the liquid is poured into second cylinder
volume = cross sectional area x height .
As cross sectional area of second cylinder is 4 times , height of liquid column in second cylinder = h / 4 .
gauge pressure in second cylinder = h / 4 x d x g = hdg / 4
.40 / 4 = .10 atm
gauge pressure in second cylinder = .10 atm.
When a glass rod is rubbed with silk, the silk becomes negatively charged. Which of the following explanations best describes that is happening?
a. Electrons move from silk to glass
b. Electrons move from glass to silk
c. Protons move from silk to glass
d. Protons move from glass to silk
Answer: b. Electrons move from glass to silk
Explanation:
When the glass rod is rub over against the silk, the glass loses the electrons due to the physical contact with the silk and the friction so produced. The surface of the glass becomes positively charged and the surface of the silk becomes negatively charged. As the surface of the glass loses electrons which are accepted by the silk surface.
The second law of thermodynamics imposes what limit on the efficiency of a heat engine?
A. The energy a heat engine must deposit in a cold reservoir is greater than or equal to the energy it extracts from a hot reservoir.
B. The energy a heat engine must deposit in a cold reservoir is greater than or equal to the energy extracted as useful work.
C. A heat engine must deposit some energy in a cold reservoir.
Answer:
C. A heat engine must deposit some energy in a cold reservoir.
Explanation:
The second law of thermodynamics says that "It is impossible to extract an amount of heat Q from a hot reservoir and use it all to do work W. Some amount of heat q must be exhausted to a cold reservoir."
This means that if we extract an amount of heat Q from the hot reservoir, the work W can never be exactly equal to Q, then there is a surplus of heat q that must be deposited in a cold reservoir.
Then we have the equation:
Q = W + q
From this we can conclude that the correct option is:
C. A heat engine must deposit some energy in a cold reservoir.
There will be always some energy that is not transformed into work, and is deposited in a cold reservoir.
C. A heat engine must deposit some energy in a cold reservoir.
The second law of thermodynamics says that "It is impossible to extract an amount of heat Q from a hot reservoir and use it all to do work W. Some amount of heat q must be exhausted to a cold reservoir". This means that if we extract an amount of heat Q from the hot reservoir, the work W can never be exactly equal to Q, then there is a surplus of heat q that must be deposited in a cold reservoir. Then we have the equation: Q = W + q There will be always some energy that is not transformed into work, and is deposited in a cold reservoir.Therefore, option C is correct.
Learn more:
brainly.com/question/17172535
What can we conclude from the attractive nature of the force between a positively charged rod and an object?
a. the object is positively charged
b. cannot determine
c. the object is a conductor
d. the object is an insulator
e. the object is negatively charged
Answer:
E; The object is negatively charged
Explanation:
Here, we want to state the conclusion that can be drawn from a positively charged rod being attracted to an object.
Generally as we know, oppositely charged materials attract while the ones with same charges repel each other.
Thus, in this case, for the rod to attract the object, there must have been an opposite charge of negativity on the object
So we conclude that the reason why the rod attracted the object was because of the presence of opposing charges on both of them. And since the rod has taken the positive charge, it is only correct to state that the object is negatively charged
can lamp that works on a 2.5 v work on a 1.12 v ?
Answer:
Explanation:
Thinking about the logics it can but it may be dim because 1.12 is lower than 2,5v so this will mean u lamp may not work or may work very dimely due to the low voltage it is receiving.
Two ships are docked next to each other. Their centers of mass are 39m apart. One ship’s mass is 9.2 *10^7 kg and the other ship’s mass is 1.84*10^8 kg. What gravitational force exists between them?
Please help!
Answer:
742.3N
Explanation:
Given parameters:
Distance = 39m
Mass 1 = 9.2 x 10⁷kg
Mass 2 = 1.84 x 10⁸kg
Unknown:
Gravitational force between the ships = ?
Solution:
To solve this problem, we apply the newton's law of universal gravitation:
Fg = [tex]\frac{G x mass 1 x mass 2}{r^{2} }[/tex]
G is the universal gravitation constant = 6.67 x 10⁻¹¹
r is the distance or separation
Fg = [tex]\frac{6.67 x 10^{-11} x 9.2 x 10^{7} x 1.84 x 10^{8} }{39^{2} }[/tex] = 742.3N
14 J of heat are removed from a gas sample while it is being compressed by a piston that does 28 J of work.
What is the change in the thermal energy of the gas?
How does change the temperature of the gas?
The increase in thermal energy of the gas sample is +14 J, and the temperature is increased.
Given information:
The heat removed from the gas sample is [tex]Q=-14\rm\;J[/tex]. The negative sign represents the heat removal.
The work done on the gas sample is [tex]W=28\rm\; J[/tex].
Work is done on the gas. So, it will be taken as positive.
According to the first law of thermodynamics, the change in thermal energy of the gas or system will be calculated as,
[tex]\Delta E=Q+W\\\Delta E=-14+28\\\Delta E=14\rm\;J[/tex]
The change in thermal energy of the system will be 14 J. It is positive. So, the thermal energy is increased. It implies the temperature of the system or gas is also increased.
Therefore, the increase in thermal energy of the gas sample is +14 J, and the temperature is increased.
For more details, refer to the link:
https://brainly.com/question/7107028
David's father is on dialysis because his kidneys have failed. He has to go regularly to have his blood filtered. The kidneys are composed of nephrons that filter the blood and remove _______________ before moving to excrete the urine.
Question options:
wastes
sweat
nephrons
proteins
Answer:
wastes
Explanation:
Each of your kidneys is made up of about a million filtering units called nephrons. Each nephron includes a filter, called the glomerulus, and a tubule. The nephrons work through a two-step process: the glomerulus filters your blood, and the tubule returns needed substances to your blood and removes wastes.
Answer:
sweat
Explanation:
Two 2.1-cm-diameter electrodes with a 0.20-mm-thick sheet of Teflon between them are attached to a 9.0 V battery. Without disconnecting the battery, the Teflon is removed.
Required:
a. What is the charge before the Teflon is removed?
b. What is the potential difference before the Teflon is removed?
c. What is the electric field before the Teflon is removed?
d. What is the charge after the Teflon is removed?
e. What is the potential difference after the Teflon is removed?
f. What are the electric field after the Teflon is removed?
Answer:
a. Q = 1881.73 x [tex]10^{-13}[/tex] C
b. As battery is not removed so, potential difference will remain same.
c. E = 21.42 x [tex]10^{3}[/tex] V/m
d. Q = 895.5 x [tex]10^{-13}[/tex] C
e. Again the potential difference will not change it will remain same as 9 V
f. E = 45 x [tex]10^{3}[/tex] V/m
Explanation:
Solution:
Here, Teflon is used so, the dielectric constant of the Teflon K = 2.1
Diameter = 2.1 cm
Radius = 2.1/2 cm
Radius = 1.05 cm
Radius = 0.015 m
Now, we need to find the area of each plate:
A = [tex]\pi r^{2}[/tex]
A = (3.14) ([tex]0.015^{2}[/tex])
A = 0.000225 [tex]m^{2}[/tex]
A = 2.25 x [tex]10^{-4}[/tex] [tex]m^{2}[/tex]
We are given the thickness of the plate which equal to the distance between the two plates.
d = 0.20 mm = 0.2 x [tex]10^{-3}[/tex] m
d = 0.2 x [tex]10^{-3}[/tex] m = distance between two plates.
Hence, the capacitance of the dielectric without the dielectric
C = [tex]\frac{E.A}{d}[/tex]
Putting up the values we get,
E = 8.85 x [tex]10^{-12}[/tex]
C = [tex]\frac{8.85 . 10^{-12} x 2.25 . 10^{-4} }{0.002}[/tex]
C = 99.5 [tex]10^{-13}[/tex]
If dielectric is included then,
[tex]C^{'}[/tex] = K C
[tex]C^{'}[/tex] = (2.1) ( 99.5 x [tex]10^{-13}[/tex])
[tex]C^{'}[/tex] = 209.08 x [tex]10^{-13}[/tex] F
As we know the voltage of the battery V = 9V So,
a) Charge before the Teflon is removed:
Q = CV
Q = [tex]C^{'}[/tex]V
Q = (209.08 x [tex]10^{-13}[/tex] F) (9V)
Q = 1881.73 x [tex]10^{-13}[/tex] C
b) Potential Difference before the Teflon is removed = ?
As battery is not removed so, potential difference will remain same.
c) Electric Field =?
As we know,
E = V/(K.d)
E = 9V/(2.1 x 0.2 x [tex]10^{-3}[/tex])
E = 21.42 x [tex]10^{3}[/tex] V/m
d) After the Teflon is removed
Q = CV
Q = (99.5 [tex]10^{-13}[/tex] ) ( 9)
Q = 895.5 x [tex]10^{-13}[/tex] C
e) Again the potential difference will not change it will remain same as 9 V
f) Electric Field = ?
E = [tex]\frac{V}{d}[/tex] (Teflon is removed)
E = 9/0.2 x [tex]10^{-3}[/tex]
E = 45 x [tex]10^{3}[/tex] V/m
A particular satellite with a mass of m is put into orbit around Ganymede (the largest moon of Jupiter) at a distance 300 km from the surface. What is the gravitational force of attraction between the satellite and the moon? (Ganymede has a mass of 1.48x1023 kg and a radius of 2631 km.) mass of satellite =5×10^8 kg.
Answer:
F = 402.18 N
Explanation:
Given that,
A particular satellite with a mass of m is put into orbit around Ganymede (the largest moon of Jupiter) at a distance 300 km from the surface. Let the mass of the satellite is 350 kg.
We need to find the gravitational force of attraction between the satellite and the moon.
The formula for the gravitational force is given by :
[tex]F=G\dfrac{Mm}{(R+h)^2}[/tex]
M is mass of Ganymede
m is mass of satellite
R is Radius of Ganymede
h is distance = 300 km
Putting all the values,
[tex]F=6.67\times 10^{-11}\times \dfrac{1.48\times 10^{23}\times 350}{(2631\times 10^{3}+300\times 10^3)^2}\\F=402.18\ N[/tex]
So, the required force of attraction between the satellite and the moon is 402.18 N.
An airplane travels 3100km at a speed of 790km/h, and then encounters a tailwind that boosts its speed to 990km/h for the next 2800 km. what was the total time for the trip? what was the average speed of the plane for this trip?
Answer:
6.75233 h
Explanation:
✓airplane travels 3100km at a speed of 790km/h,
Speed= distance/ time
Time= speed/distance
Distance=3100 km
Speed=790km/h
Time= 3100 /790
= 3.924 h
✓and then encounters a tailwind that boosts its speed to 990km/h for the next 2800 km
Time= 2800 k990km/h
= 2800/990
= 2.828 h
We can calculate total times as (3.924 + 2.828)
= 6.75233 h
In the picture shown below A represents a characteristic of only geocentric model, B represents a characteristic common to both geocentric and heliocentric models, C represents a characteristic of only heliocentric model, and D represents a characteristic which the geocentric and heliocentric models do not have.
Under which label will the characteristic, "The sun and planets revolve around a central moon in the solar system" fall?
A
B
C
D
____ is factual information not subject to bias.
Interpretation
Analysis
Data
Opinion
Answer:
Data
Explanation:
Data is factual information not subject to bias.
This ultimately implies that, data connotes fact, thus, it is an information that is credible, accurate, a statement of truth, evidential and proven.
In Computer programming, a data dictionary can be defined as a centralized collection of information on a specific data such as attributes, names, fields and definitions that are being used in a computer database system.
In a data dictionary, data elements are combined into records, which are meaningful combinations of data elements that are included in data flows or retained in data stores.
This ultimately implies that, a data dictionary found in a computer database system typically contains the records about all the data elements (objects) such as data relationships with other elements, ownership, type, size, primary keys etc. This records are stored and communicated to other data when required or needed.
what are ribosomes?
I'm tired. But I have insomnia. Big ugh moment. <.<.
Answer:
Ribosomes are organelles the make protein for the cell.
How does heat from the sun get to earth?
What happens to the sum of the ball's kinetic energy and potential energy as the ball rolls from point A to point E? Assume there's no friction between the ball and the ground.
А. The sum decreases.
В. The sum increases.
C. The sum remains the same.
D. The sum always equals zero.
Answer:
C. The sum remains the same.
Explanation:
The sum of the kinetic and potential energy remains the same as the all rolls from point A to E.
We know this based on the law of conservation of energy that is in play within the system.
The law of conservation of energy states that "energy is neither created nor destroyed within a system but transformed from one form to another".
At the top of the potential energy is maximum As the ball rolls down, the potential energy is converted to kinetic energy. Potential energy is due to the position of a bodyKinetic energy is due to the the motion of the body