Answer:
C
Explanation:
The mass of insoluble lead iodide produced from 0.830 g of potassium iodide in a reaction with lead nitrate is 2.31 g. Thus option C is correct.
What is lead iodide?Lead iodide or PbI is an ionic compound formed from the ionic bonding between metal lead and iodine. It is industrially prepared from the reaction of aqueous lead nitrate with potassium iodide.
Potassium iodide easily reacts with lead iodide as per the reaction written below:
[tex]\rm KI + PbNO_{3} \rightarrow KNO_{3} + PbI[/tex]
As per this reaction one mole of potassium iodide produce one mole of lead iodide. The molar mass of potassium iodide is 166 g/mol and that of lead iodide is 461 g/mol.
Thus, 166 g of potassium iodide gives 461 g of lead iodide. The mass of lead iodide then produced from 0.830 g of potassium iodide is calculated as follows:
mass = (0.830 g × 461)/ 166
= 2.31 g.
Hence, the mass of insoluble lead iodide produced from 0.830 g of potassium iodide in a reaction with lead nitrate is 2.31 g and option C is correct.
To fine more about lead iodide, refer the link below:
https://brainly.com/question/28099104
#SPJ2
It is the combination of two or more substances that are physically combined and a new substance was formed. What do you mean by this?
A. It is Solid
B. It is Gas
C. It is Liquid
D. It is Mixture
Answer:
D. It is a Mixture
Explanation:
It tells us it is a combination of substances. We do not know the states of these substances or the state of the new substance. However, we do know that it was physically combined. Hence, this is a mixture. (FYI If it was combined chemically, it would be a compound)
The energy level diagram shown below represents a fictional gas. What is the energy of a photon that would move an electron from level 2 to level 5?
A. 5.8 eV
B. 4.8 eV
C. 4.2 eV
D. 2.65 eV
The energy of a photon that would move an electron from level 2 to level 5 : B. 4.8 eV
Further explanationThe electron energy at the nth shell can be formulated:
En = -Rh / n²Rh = constant 2.179.10⁻¹⁸ J
So the electron transfer energy (ΔE)
ΔE = E final- E initial
energy at n=2(level 2) = -5.3 eV
energy at n=5(level 5) = -0.5 eV
So the energy absorbed :
[tex]\tt \Delta E=-0.5-(-5.3)=-0.5+5.3=4.8`eV[/tex]
The energy required to move an electron from level 2 to level 5 is 4.8 eV.
According to the Bohr model of the atom, an electron moves from a lower to a higher energy level when it absorbs energy. The same energy is released when the atom returns to ground state.
When an electron from level 2 to level 5, the energy of the photon required is;
ΔE = E5 - E2 = -0.5eV - (-5.3eV)
ΔE = 4.8eV
Learn more: https://brainly.com/question/865531?
According to the following reaction, how many grams of water are necessary to form 0.705 moles zinc hydroxide?
zinc oxide (s) + water (1) — zinc hydroxide (aq)
grams water
Answer:
12.69g
Explanation:
as you see in the equation the number of moles for zinc hydroxide is same the water so,
0.705=mass\18mol g^-1
mass of water = 12.69g
hope is helpful
How do the physical and chemical properties the halogens compare with those of the noble gases?
Explanation:
To form bonds with noble gases, a lot of energy is required to form those bonds. Halogens, on the other hand, are extremely reactive. ... The halogens tend to be very reactive, while the noble gases are in no way reactive and don't bond easily, if at all.
6.023*10^26 molecules of hydrogen gas into mass in gram
Answer:
Avogadro’s Number
Avogadro’s NumberIt certainly is easy to count bananas or to count elephants (as long as you stay out of their way). However, you would be counting grains of sugar from your sugar canister for a long, long time. Atoms and molecules are extremely small – far, far smaller than grains of sugar. Counting atoms or molecules is not only unwise, it is absolutely impossible. One drop of water contains about 10 22 molecules of water. If you counted 10 molecules every second for 50 years without stopping you would have counted only 1.6 × 10 10 molecules. Put another way, at that counting rate, it would take you over 30 trillion years to count the water molecules in one tiny drop.
Avogadro’s NumberIt certainly is easy to count bananas or to count elephants (as long as you stay out of their way). However, you would be counting grains of sugar from your sugar canister for a long, long time. Atoms and molecules are extremely small – far, far smaller than grains of sugar. Counting atoms or molecules is not only unwise, it is absolutely impossible. One drop of water contains about 10 22 molecules of water. If you counted 10 molecules every second for 50 years without stopping you would have counted only 1.6 × 10 10 molecules. Put another way, at that counting rate, it would take you over 30 trillion years to count the water molecules in one tiny drop.Chemists needed a name that can stand for a very large number of items. Amedeo Avogadro (1776 – 1856), an Italian scientist, provided just such a number. He is responsible for the counting unit of measure called the mole. A mole (mol) is the amount of a substance that contains 6.02 × 10 23 representative particles of that substance. The mole is the SI unit for amount of a substance. Just like the dozen and the gross, it is a name that stands for a number. There are therefore 6.02 × 10 23 water molecules in a mole of water molecules. There also would be 6.02 × 10 23 bananas in a mole of bananas, if such a huge number of bananas ever existed
Answer:
Mass = 2000 g
Explanation:
Given data:
Number of molecules of hydrogen = 6.023×10²⁶
Mass of hydrogen = ?
Solution:
1 mole of hydrogen contain 6.022×10²³ molecules
6.023×10²⁶ molecules× 1 mol/ 6.022×10²³ molecules
1.00 ×10³ mol
1000 mol
Mass of hydrogen:
Mass = number of moles × molar mass
Mass = 1000 mol × 2 g/mol
Mass = 2000 g
Ammonia gas(NH3) and oxygen(O2) gas react to form nitrogen gas and water vapor. Suppose you have 2.0 mol of and 13.0 mol of O2 in a reactor. Calculate the largest amount of that could be produced. Round your answer to the nearest .
Answer:
[tex]n_{H_2O}=3.0molH_2O\\\\n_{N_2}=1.0molN_2[/tex]
Explanation:
Hello!
In this case, for the described reaction we have:
[tex]2NH_3(g)+\frac{3}{2} O_2(g)\rightarrow N_2(g)+3H_2O(g)[/tex]
Which means there is 2:3/2 mole ratio between ammonia and oxygen and we use it to compute the consumed moles of ammonia by 13.0 moles of oxygen as shown below:
[tex]n_{NH_3}^{consumed \ by\ O_2}=13.0molO_2*\frac{2molNH_3}{\frac{3}{2}molO_2 } =17.33molNH_3[/tex]
However, since just 2.0 mol of ammonia is available, we infer it is the limiting reactant and the maximum amount of both nitrogen and water that can be produced is computed below:
[tex]n_{H_2O}=2.0molNH_3*\frac{3molH_2O}{2molNH_3} =3.0molH_2O\\\\n_{N_2}=2.0molNH_3*\frac{1molN_2}{2molNH_3} =1.0molN_2[/tex]
Best regards!
A collection of the same kind of cells working together to do the same job
Answer:
A group of cells doing the same job forms a tissue. A group of tissues working together forms an organ. Organs work in groups, too. A group of organs doing the same job is called a system.
Explanation:
Which separation technique is based on differences in the volatility of the substances to be separated?
a. filtration
b. solvent extraction
c. Distillation
d. paper chromatography
Answer:
The correct answer is c. Distillation
Explanation:
The volatility of a substance refers to the tendency to vaporize. The more volatility, more readily the substance vaporizes and passes from liquid state to gas state.
From the options, the only operation that separes substances by their tendency to vaporize is distillation. In distillation, evaporation and condensation processes at different temperatures are used to separe miscible liquid substances.
Therefore, the correct option is c. Distillation
Answer:
C. Distillation
Explanation:
EDGE2021
The formula for a lutetium carbonate compound is Lu2(CO3)3. What would be the formula for a lutetium nitrate compound given that the charge of lutetium is the same in both compounds?
a. LuNO3
b. Lu2NO3
c. Lu(NO3)2
d. Lu2(NO3)3
e. Lu(NO3)3
Answer:
E
Explanation:
From Lu2(CO3)3, we can determine the charge of the variable charge transition metal Lu has a charge of 3, as CO3 has a 2- charge (3*-2 = 6, 6/2 = 3). Then, we apply this to nitrate, which has a charge of 1-. Balance charges, reduce, and you get E.
A molecule has sp3d2 hybridization with 1 lone pair. ... The electron pair geometry of this molecule is: octahedral ... The geometry of this molecule is: octahedral . ... This molecule will have approximate bond angles of (If more than one bond angle is possible, separate each with a space.):
Answer:
electron pair geometry - octahedral
molecular geometry - square pyramidal
bond angle - < 90 degrees
Explanation:
According to Valence Shell Electron Pair Repulsion Theory (VSEPR), The shapes of molecules depend on the number of electron pairs on the outermost shell of the central atom in the molecule. Recall that electron pairs are always positioned as far apart in space as possible to minimize repulsion.
For a molecule in sp3d2 hybridization, the expected electron domain geometry is octahedral. However, the presence of a lone pair in the molecule distorts the electron pair geometry away from the expected octahedral shape giving a molecular geometry of square pyramidal and decreases the bond angle less than the expected 90 degrees.
300cm³ of hydrogen diffuses through a porous pot in 50 seconds how long will it take 500 cm cube of oxygen diffuses through the same pot(h=1,o=16)
It takes 333.3 s for Oxygen to diffuses
Further explanationGraham's law: the rate of effusion of a gas is inversely proportional to the square root of its molar masses or
the effusion rates of two gases = the square root of the inverse of their molar masses:
[tex]\rm \dfrac{r_1}{r_2}=\sqrt{\dfrac{M_2}{M_1} }[/tex]
or
[tex]\rm M_1\times r_1^2=M_2\times r_2^2[/tex]
r₁ H₂ = 300 cm³/50 s=6 cm³/s
M₁ H₂ = 2 g/mol
M₂ O₂ = 32 g/mol
[tex]\tt 2\times 6^2=32\times r_2^2\\\\r_2^2=\dfrac{2\times 6^2}{32}=2.25\rightarrow r_2=1.5[/tex]
the diffusion time of Oxygen :
[tex]\tt r_2=\dfrac{V}{t}\\\\t=\dfrac{V}{r_2}=\dfrac{500~cm^3}{1.5~cm^3/s}=333.3~s[/tex]
Which of the following statements is true about covalent bonds?
Valence Electrons are shared in order to achieve the bond
O Covalent bonds form when the nuclei of atoms attract each other
O Covalent Bonds all have the same bond length no matter what atoms are in the
bond
Transferring of electrons from one atom to another creates the bond
Answer:
the answer is "Transferring of electrons from one atom to another creates the bond"
Explanation:
The statement which is true about covalent bonds is that the valence
electrons are shared in order to achieve the bond.
Covalent bonds involves the atoms of two elements sharing electrons in
order to achieve a stable configuration. The electrons which are shared are
those at the outermost layer of the shell and they are called valence
electrons.
These bonds help in the formation of new compounds such as water which
is formed from the covalent bonding between hydrogen and oxygen.
Read more on https://brainly.com/question/3447218
12. When the frequency of a wave increases, what happens to the wavelength?
A. The wavelength is not directly affected by the frequency of a wave
B. The wavelength increases
C. The wavelength decreases
D. More specific information is needed to form a conclusion
Answer:
C. The wavelength decreases
Explanation:
This is because frequency is how often the wave hits the top (peak) and the bottom (through). The more it hits the less wavelength it will have because it is moving faster and has more energy.
an electric current causes water to be transformed into hydrogen and oxygen gasses a physical change or a chemical change
How many moles of ion are in 2L of a 3M solution?
1. 2Al(s) + 3H2SO4(aq) → Al2(SO4)3(aq) + 3H2(g) a. Determine the volume (mL) of 15.0 M sulfuric acid needed to react with 45.0 g of aluminum to produce aluminum sulfate. b. Determine the % yield if 112 g of aluminum sulfate is produced under the above conditions.
Answer:
a. 167 mL b. 39.27 %
Explanation:
a. From the chemical equation. 2 mole of Al reacts with 3 mole H₂SO₄ to produce 1 mol Al₂(SO₄)₃.
Now, we calculate the number of moles of Al in 45.0 g Al.
We know number of moles, n = m/M where m = mass of Al = 45.0 g and M = molar mass of Al = 26.98 g/mol.
So n = 45.0 g/26.98 g/mol = 1.668 mol
Since 2 mole of Al reacts with 3 mole H₂SO₄, then 1.668 mole of Al reacts with x mole H₂SO₄. So, x = 3 × 1.668/2 mol = 2.5 mol
So, we have 2.5 mol H₂SO₄.
Now number of moles of H₂SO₄, n = CV where C = concentration of H₂SO₄ = 15.0 M = 15.0 mol/L and V = volume of H₂SO₄.
V = n/C
= 2.5 mol/15.0 mol/L
= 0.167 L
= 167 mL of 15.0 M H₂SO₄ reacts with 45.0 g Al to produce aluminum sulfate.
b. From the chemical reaction, 2 mol Al produces 1 mol Al₂(SO₄)₃
Therefore 1.668 mol Al will produce x mol Al₂(SO₄)₃. So, x = 1 mol × 1.668 mol/2 mol = 0.834 mol
So, we need to find the mass of 0.834 mol Al₂(SO₄)₃. Now molar mass Al₂(SO₄)₃ = 2 × 26.98 g/mol + 3 × 32 g/mol + 4 × 3 × 16 g/mol = 53.96 g/mol + 96 g/mol + 192 g/mol = 341.96 g/mol.
Also number of moles of Al₂(SO₄)₃, n = mass of Al₂(SO₄)₃,m/molar mass Al₂(SO₄)₃, M
n =m/M
So, m = nM = 0.834 mol × 341.96 g/mol = 285.2 g
% yield = Actual yield/theoretical yield × 100 %
Actual yield = 112 g, /theoretical yield = 285.2 g
So, % yield = 112 g/285.2 g × 100 %
= 0.3927 × 100 %
= 39.27 %
The volume (mL) of 15.0 M sulfuric acid needed to react with 45.0 g of aluminum is 166mL and % yield of the reaction is 39.46%.
How do we calculate moles?Moles of any substance will be calculated by using the below formula as:
n = W/M, where
W = given mass
M = molar mass
Given chemical reaction is :
2Al(s) + 3H₂SO₄(aq) → Al₂(SO₄)₃(aq) + 3H₂(g)
Moles of 45g of Al will be calculated as:
n = 45g / 27g/mol = 1.66 mole
From the stoichiometry of the reaction, it is clear that:
1.66 moles of Al = react with 3/2×1.66=2.49 moles of H₂SO₄
By using the formula of molarity we can calculate the volume of H₂SO₄ as:
M = n/V
V = (2.49) / (15) = 0.166L = 166mL
Again from the stoichiometry it is clear that:
1.66 moles of Al = produces 1/2×1.66= 0.83 moles of Al₂(SO₄)₃
Mass of 0.83 moles of Al₂(SO₄)₃ = (0.83mol)(341.96g/mol) = 283.82 g
Given actual yield of Al₂(SO₄)₃ = 112g
% yield will be calculated as:
Percent yield = (Actual yield/Theoretical yield) × 100
% yield = (112/283.82) × 100 = 39.46%
Hence required values are discussed above.
To know more about percent yield, visit the below link:
https://brainly.com/question/8638404
The diagram shows the setup of an experiment. A few observations of the experiment are listed in the table below the diagram.
A beaker filled three-fourths with a liquid labeled colorless silver nitrate solution is shown. A small strip is shown inside the beaker. The strip is labeled copper strip. The title of the image is Experimental Setup.
Experimental Observations
Observation Description
1 Solution turned blue
2 Gray particles were deposited on the edge of the strip
Which of the following is the correct explanation for one of the given observations?
Observation 2 is a result of nitrate ions moving into the solution.
Observation 1 is a result of copper ions moving into the solution.
Observation 1 is a result of silver atoms losing one electron.
Observation 2 is a result of silver ions losing one electron.
Copper is higher than silver in the electrochemical series hence copper displaces silver in the electrochemical series.
The solubility of a metal in another is determined by their relative positions in the electrochemical series. The metals that are higher above in the electrochemical series displaces the metals that are lower in the electrochemical series.
Copper is higher than silver in the electrochemical series hence copper displaces silver in the electrochemical series. Therefore, the correct explanation for an observation is that;
Observation 1 is a result of copper ions moving into the solution.Learn more: https://brainly.com/question/9743981
Answer:
Observation 1 is a result of copper ions moving into the solution.
Explanation:
got it right on the test
If 0.0692 mol CaCl2 is dissolved in water to make a 0.810 M solution, what is the volume of the solution?
Answer:
Just ask google for help
Explanation:
I always do it and get it right
which group has two valence electrons A)Alkali metals B) Noble Gases C)Halogens D) Alkaline Earth Metals
Answer: The answer is A.
Explanation: Calcium is a group 2 element with two valence electrons. Therefore, it is very reactive and gives up electrons in chemical reactions. Calcium is also classified chemically as one of the alkaline earth elements (that is, in Group 2 of the periodic table. The metal is obviously reactive.
Answer:
D) Alkaline Earth Metals
Explanation:
:)
what is the OH- in a solution that has a H+ = 2×10-5 M
Answer:
Explanation:
{H+}*[OH-] = 1 * 10^-14
[2*10^-5]* [OH^-] = 1*10^-14
[OH^-] = 1*10^-14/2*10^-5
[OH^-] = 5*10^-10
22. Metallic compounds
a. are poor conductors of electricity
b. dissolve in water
c. have low melting points
d. can be hammered into sheets
a polymer is made from 500 ethene molecule how many carbons will it contain
Explanation:
monomer
smaller molecules that are used to prepare a polymer.
may or may not be equivalent to the repeat unit.
oligomer
a molecule consisting of several repeat units of a monomer, but not large enough to be considered a polymer
polymers
arge, usually chainlike molecules that are built from small molecules called monomers. Polymers form the basis for synthetic fibers, rubbers, and plastics and have played a leading role in the revolution that has been brought about in daily life by chemistry.
first synthetic polymers were produced as
by-products of various organic reactions and were regarded as unwanted contaminants.
first completely synthetic plastic
Bakelite, a substance that when molded to a certain shape under high pressure and temperature cannot be softened again or dissolved. Bakelite is a thermoset polymer. In contrast, cellulose nitrate is a thermoplastic polymer; that is, it can be remelted after it has been molded.
ethylene
basic raw material in the production of polyethylene and other important compounds. Over 135 million tons of ethylene were produced worldwide in 2010 for use in the polymer, petrochemical, and plastic industries. Ethylene is produced industrially in a process called cracking, in which the long hydrocarbon chains in a petroleum mixture are broken into smaller molecules.
monomer ethylene (C2H4) is
a gas at room temperature, but when polymerized, using a transition metal catalyst, it is transformed into a solid material made up of long chains of -CH2- units called polyethylene. Polyethylene is a commodity plastic used primarily for packaging (bags and films).
nylon
the silky appearance and strength of this thread and realized that nylon could be drawn into useful fibers.
The reason for this behavior of nylon is now understood. When nylon is first formed, the individual polymer chains are oriented randomly, like cooked spaghetti, and the sub- stance is highly amorphous. However, when drawn out into a thread, the chains tend to line up (the nylon becomes more crystalline), which leads to increased hydrogen bonding between adjacent chains. This increase in crystallinity, along with the resulting increase in hydrogen-bonding interactions, leads to strong fibers and thus to a highly useful mate- rial. Commercially, nylon is produced by forcing the raw material through a spinneret, a plate containing small holes, which forces the polymer chains to line up.
polyethylene
simplest and one of the best-known polymers, constructed from ethylene monomers.
CH2=CH2
Polyethylene is a member of one subset of synthetic polymers classified as plastics.
properties of polyethylene
Polyethylene is a tough, flexible plastic used for piping, bottles, electrical insulation, packaging films, garbage bags, and many other purposes.
Its properties can be varied by using substituted ethylene monomers. For example, when tetrafluoroethylene is the monomer, the polymer Teflon.
a sample gas is in the rigid cylinder with a movable piston the pressure of the gas is kept constant if the kelvin temperature of the gas is doubled the volume of the gas is?
Answer:
The pressure of the gas is kept constant. If the Kelvin temperature of the gas is doubled, the volume of the gas is. O 1.
2. If 4c-3= -31, what is the value of -2c+11
Explanation:
see the pic for the answer
which of the following is an example of violating aufbau principle in filling electronic orbitals
Answer:
[Ne] 3s² 3d³
Explanation:
According to aufbau's principle of filling electronic orbitals, the sublevels with lower energies are filled up before those with higher energies.
One important to know about this principle is that sublevels do not fill in numerical order.
The order of filling is;
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f e.tc
From the given choices the wrong one is;
[Ne] 3s² 3d³
3p fills up before 3d;
Calculate the slope of each line using the points given. (25.6cm³ , 28.16g), (17.3cm³, 19.03g)
Answer:
1.1
Explanation:
The slope of a line can be calculated using the values of the x and y corrdinates. The equation is given as;
M = ΔY / ΔX = Y2 - Y1 / X2 - X1
From the points;
(25.6cm³ , 28.16g) - (X1, Y1)
(17.3cm³, 19.03g) - (X2, Y2)
Inserting the values into the equation;
M = 19.03 - 28.16 / 17.3 - 25.6
M = -9.13 / -8.3 = 1.1
Give an
example of when a plant or animal might
use energy they have stored.
Answer:
hunting for other animals or when they are really hungry
Explanation:
We have that for the Question "Give an example of when a plant or animal might use energy they have stored. " it can be said that
Plants may use the energy in food synthesizing and the may also use the stored energy in excretion. Animals store the energy for use during hibernation
From the question we are told
Give an example of when a plant or animal might use energy they have stored.
Generally
Plants tend to hold energy as starch and break them down to glucose to usePlants may use the energy in food synthesizing and the may also use the stored energy in excretion.
While most animals store the energy for use during hibernation .a season when they go without food or water and no movement due to the season
For more information on this visit
https://brainly.com/question/23379286
Of the following elements, which one has the lowest first ionization energy?
boron carbon aluminum silicon
Answer:
Boron
Explanation:
Because it has a complete 2s orbital and therefore, an increased shielding of the 2s orbital will reduce the ionisation energy.
Sugar and Salt in water magnetism, state of matter, or solubility?
please help!!!!
Answer:
solubility
Explanation:
What is the IUPAC name of this compound? ________ CH3-CHCl-CH2-CH2-Cl
Answer:
The prefixes are fluoro-, chloro-, bromo-, and iodo-. Thus CH 3CH 2Cl has the common name ethyl chloride and the IUPAC name chloroethane. Alkyl halides with simple alkyl groups (one to four carbon atoms) are often called by common names.05/06/2019
The IUPAC name of this compound is 2,3- dichlorobutane.
What is compound?Compound is defined as a chemical substance made up of identical molecules containing atoms from more than one type of chemical element.
Molecule consisting atoms of only one element is not called compound.It is transformed into new substances during chemical reactions. There are four major types of compounds depending on chemical bonding present in them.They are:
1)Molecular compounds where in atoms are joined by covalent bonds.
2) ionic compounds where atoms are joined by ionic bond.
3)Inter-metallic compounds where atoms are held by metallic bonds
4) co-ordination complexes where atoms are held by co-ordinate bonds.
They have a unique chemical structure held together by chemical bonds Compounds have different properties as those of elements because when a compound is formed the properties of the substance are totally altered.
Learn more about compound,here:
https://brainly.com/question/13516179
#SPJ2