Answer:
5 extractions to extract at least 99.5% of 50.0 g Compound A from 100 mL of water
Explanation:
If K=10...
Partition coefficient is defined as the ratio of concentrations of a compound A in two inmiscibles solvents:
K = 10 = Conc. Organic solvent / Conc. Water
Usually organic phase over aqueous phase.
In the first 20mL extraction, the organic solvent will extract:
10 = X / 20mL / (50.0g - X) / 100mL
10 = 100X / (1000-20X)
10000 - 200X = 100X
10000 = 300X
X = 33.3g of compound A are extracted in the first extraction
Remember you want to extract 99.5%, that is 50.0g*99.5% = 49.75g
In the aqueous phase remain: 50-33.3g = 16.7g:
Second extraction:
10 = X / 20mL / (16.7g - X) / 100mL
10 = 100X / (334-20X)
3340 - 200X = 100X
3340 = 300X
11.1g are extracted and will remain: 16.7g - 11.1g = 5.6g
Third extraction:
10 = X / 20mL / (5.6g - X) / 100mL
10 = 100X / (112-20X)
1120 - 200X = 100X
1120 = 300X
3.8g are extracted and will remain: 5.6g - 3.8g = 1.8g
Fourth extraction:
10 = X / 20mL / (1.8g - X) / 100mL
10 = 100X / (36-20X)
360 - 200X = 100X
360 = 300X
1.2g are extracted and will remain: 1.8g -1.2g = 0.6g
Fifth extraction:
10 = X / 20mL / (0.6g - X) / 100mL
10 = 100X / (12-20X)
120 - 200X = 100X
120 = 300X
0.4g are extracted. The total extractions gives:
33.3g + 11.1g + 3.8g + 1.2g + 0.4g = 49.8g
That means, you need to do:
5 extractions to extract at least 99.5% of 50.0 g Compound A from 100 mL of waterA student was performing a separation of a mixture of organic compounds. The final step of the process involved a filtration of the analyte from an aqueous solution. After drying the filtered solid for a very short period time, they took the melting point of the compound. The measured melting point range of the compound was 106 – 113.8 0C, while the literature melting point of the compound was 122.3 0C. The above scenario is a very common one in organic labs.
1. Do you think their sample was pure?
2. If not, then what do you think could be the source of error.
3. How do you think this error can be minimized?
Answer:
1) No
2) The solvent contaminated the analyte
3) The solvent should be evaporated properly before washing and drying the analyte
Explanation:
During separation of organic compounds, solvents are used. These solvents are able to contaminate the analyte and lead to a large difference in melting point of solids obtained.
However, the error can be minimized by evaporating the solvent before washing, drying and melting point determination of the solid.
When nitrogen, oxygen, fluorine, sodium, magnesium and aluminum ionize, they all will have:
a. different electron configuration from each other.
b. an unchanged electron configuration.
c. the same charge.
d. the same electron configuration (isoelectronic) as neon.
[Definition: The word isoelectronic means that when you write out the electron configuration they are the same. An exam would be He and Li whereby both of them have 2 electrons and therefore they are both are 1s2 in their electron configurations.]
Answer: d. the same electron configuration (isoelectronic) as neon.
Explanation:
Isoelectronic species are defined as the molecules which have the same number of electrons.
Atomic number of nitrogen is 7 and thus has 7 electrons. Nitrogen has electronic configuration of 2,5 and thus can gain 3 electrons and thus [tex]N^{3-}[/tex] will have electronic configuration of 2,8 ( same as that of neon)
Atomic number of oxygen is 8 and thus has 8 electrons. Oxygen has electronic configuration of 2,6 and thus can gain 2 electrons and thus [tex]O^{2-}[/tex] will have electronic configuration of 2,8 ( same as that of neon)
Atomic number of flourine is 9 and thus has 9 electrons. Flourine has electronic configuration of 2,7 and thus can gain 1 electron and thus [tex]F^{-}[/tex] will have electronic configuration of 2,8 ( same as that of neon)
Atomic number of sodium is 11 and thus has 11 electrons. Sodium has electronic configuration of 2,8,1 and thus can lose 1 electron and thus [tex]Na^{+}[/tex] will have electronic configuration of 2,8 ( same as that of neon)
Atomic number of magnesium is 12 and thus has 12 electrons. Magnesium has electronic configuration of 2,8,2 and thus can lose 2 electrons and thus [tex]Mg^{2+}[/tex] will have electronic configuration of 2,8 ( same as that of neon)
Atomic number of aluminium is 13 and thus has 13 electrons. Aluminium has electronic configuration of 2,8,3 and thus can lose 3 electrons and thus [tex]Al^{3+}[/tex] will have electronic configuration of 2,8 ( same as that of neon)
13. (6C) An unknown chemical has the
following properties: it is a white crystal,
reacts with water, and has a high boiling
point. Which of these properties is
physical?
A White color only
B Reacts with water, high
boiling point
C Reacts with water only
D White color, high boiling
point
Answer: it is B
Explanation:
g Calculate the mass percent of sodium bicarbonate in the solution that has 7.00 g of solution and 0.052 Kg of water.
Answer:
11.86%
Explanation:
First, we convert both solvent and solute to the same unit, say, kg. We have.
Mass of Sodium Bicarbonate = 7g = 7/1000 kg = 0.007 kg
Mass of water = 0.052 kg.
Formula for the mass percent is
% of sodium bicarbonate = [(mass of sodium bicarbonate) / (mass of total solution) * 100%]
Total mass of solution = 0.007 + 0.052 Total mass of solution = 0.059
% of sodium bicarbonate = 0.007 / 0.059 * 100%
% of sodium bicarbonate = 11.86%
Therefore, the mass percent of sodium bicarbonate I'm the solution is 11.86%
Select the term that matches each definition:
a) A decrease in the solubility of an ionic compound as a result of the addition of a common ion.
b) The mass of a salt in grams that will dissolve in 100 mL of water.
c) A solution that has dissolved the maximum amount of a compound at a given temperature. Any further addition of salt will remain undissolved.
d) The product of the molarities of the dissolved ions, raised to a power equal to the ion's coefficient in the balanced chemical equation.
e) The maximum number of moles of a salt that will dissolve in 1 L of solution.
*** Answer options for all questions: ***
- Solubility
- Molar Solubility
- Solubility product constant
- Common ion effect
- Saturated Solution
Answer:
a) common ion effect
b) solubility
c) saturated solution
d) solubility product constant
e) molar solubility
Explanation:
When a substance, say BA2 is dissolved in a solution and another substance CA2 is dissolved in the same solution. The solubility of BA2 is decreased due to the addition of CA2. This is known as common ion effect.
The mass of a substance that will dissolve in a given Volume of solvent is known as it's solubility.
The molar solubility is the amount of moles of solvent that dissolves in 1 dm^3 of solvent.
A solution that contains just as much solute as it can normally hold at a given temperature is known as a saturated solution.
Lastly, the product of molar solubilites raised to the power of the molar coefficient is know as the solubility product constant.
The correct matches and their explanation are:
a) A decrease in the solubility of an ionic compound as a result of the addition of a common ion: Option 4. common ion effect
It relates to the equilibrium effect that occurs due to the addition of common ions.b) The mass of salt in grams that will dissolve in 100 mL of water: Option 1. solubility
Solubility is the property of solute to form a solution with the solvent of another substance.c) A solution that has dissolved the maximum amount of a compound at a given temperature. Any further addition of salt will remain undissolved: Option 5. saturated solution
When the solution cannot accommodate any more addition of solute of a substance is called a saturated solution.d) The product of the molarities of the dissolved ions, raised to a power equal to the ion's coefficient in the balanced chemical equation: Option 3. solubility product constant
It is an equilibrium constant for the solid solute dissolved in the solution.e) The maximum number of moles of a salt that will dissolve in 1 L of solution: Option 2. molar solubility
Before the saturation of a solution, the amount of solute it can dissolve is called molar solubility.To learn more about molar solubility and common ion effect follow the link:
https://brainly.com/question/14782973
To what volume would you need to dilute 200 mL of a 5.85M solution of Ca(OH)2 to make it a 1.95M solution?
Answer: 600 mL
Explanation:
Given that;
M₁ = 5.85 m
M₂ = 1.95 m
V₁ = 200 mL
V₂ = ?
Now from the dilution law;
M₁V₁ = M₂V₂
so we substitute
5.85 × 200 = 1.95 × V₂
1170 = 1.95V₂
V₂ = 1170 / 1.95
V₂ = 600 mL
Therefore final volume is 600 mL
which element Shows very similar chemical properties to barium?
a change of matter is a physical change
True or False
Answer:
true
Explanation:
hope it helps
Answer:
I'm pretty sure it's true
Explanation:
20 characters
How to calculate calories
Answer:If you are sedentary (little or no exercise) : Calorie-Calculation = BMR x 1.2.
If you are lightly active (light exercise/sports 1-3 days/week) : Calorie-Calculation = BMR x 1.375.
Explanation:
Which is a chemical property of milk
A. Milk has a ph ranging from 6.4 to 6.8
B. Milk spoils when left unrefrigerated
C. Milk boils at about 212F
D. Milk curdles when mixed with vinegar
Answer:
C. Milk boils at about 212F
Explanation:
The principal constituents of milk are water, fat, proteins, lactose (milk sugar) and minerals (salts). Milk also contains trace amounts of other substances such as pigments, enzymes, vitamins, phospholipids (substances with fatlike properties), and gases.
twelve grams of sodium chloride wwere dissolved in 52 ml (52g) of distilled water, calculate the % sodium chloride in the solution
Answer:
The mass of sodium chloride in the mixture is 18.75%
Explanation:
Here, we want to calculate the percentage of sodium chloride in the mixture.
The total mass of the mixture is 52 g + 12 g = 64 g
So the percentage mass of sodium chloride will be;
mass of sodium chloride/ Total mass * 100%
That will be: 12/64 * 100 = 18.75%
Describing different types of waves. Which statement describes the wave? Check all that apply
Answer:
A. the wave is a mechanical wave
C. the wave moves energy through matter
F: the wave transfers energy perpendicular to the motion of the wave.
4. CHALLENGE Suppose you had a mixture of sand and small,
hollow beads. How might you separate the mixture?
I'm not sure if this is the answer but maybe oil.
If a sample of CO2 contains 48 g of oxygen, how many moles of CO2 are there?
Answer:
0.75 moles of CO2
Explanation:
molar mass of CO2⇒ 44.01 g/mol
molar mass Oxygen ⇒ 31.998 g/mol
divide the mass given by molar mass of oxygen so
48÷31.998= 1.50009376 moles of O
then you use the ration of oxygen to carbon to find the moles of CO2 which is one mole of CO2 for 2 moles of oxygen
1.50009376 moles of O ×[tex]\frac{1}{2}[/tex] = 0.75004688
with sig figs
0.75 moles of CO2
The solubility of silver(I)phosphate at a given temperature is 2.43 g/L. Calculate the Ksp at this temperature. After you calculate the Kspvalue, take the negative log and enter the (pKsp) value with 2 decimal places.
Answer:
Kps = 3.07 x 10⁻⁸
pKsp= 7.51
Explanation:
First, we calculate the molar solubility of silver(I)phosphate (Ag₃PO₄) from the solubility in g/L by using its molar mass (418.6 g/mol):
2.43 g/L x 1 mol/418.6 g = 5.8 x 10⁻³ mol/L= s
Now, we have to write the ICE chart for the aqueous equilibrium of Ag₃PO₄ as follows:
Ag₃PO₄(g) ⇄ 3 Ag⁺(aq) + PO₄³⁻
I 0 0
C +3s +s
E 3s s
Ksp = [Ag⁺]³[PO₄³⁻]= (3s)³s= 27s⁴
Since s=5.8 x 10⁻³ mol/L, we calculate Ksp:
Ksp= 27(5.8 x 10⁻³ mol/L)⁴= 3.07 x 10⁻⁸
The pKsp value is:
pKsp= - log Ksp = -log (3.07 x 10⁻⁸) = 7.51
All living things are made of one or more cells. Which is true of all cells?
20
How do you determine the number of barium atoms in the formula below?
4Ba(OH)2
F
# of Ba atoms = coefficient 4 + subscript 1 = 5
G
# of Ba atoms = coefficient 4 X subscript 1 = 4
H
# of Ba atoms = subscript 4 X coefficient 2 = 6
# of Ba atoms coefficient 1 + subscript 1 = 2
J
Answer:
G is correct option:
# of Ba atoms = coefficient 4 × subscript 1= 4
Explanation:
Formula:
4Ba(OH)₂
G is correct option:
# of Ba atoms = coefficient 4 × subscript 1= 4
Because there are only 4 atoms of Ba in given formula.
Ba(OH)₂ contain one atom of Ba while in question there are 4 moles of Ba(OH)₂ present thus total 4×1 = 4 atoms of Ba present.
Other options are incorrect. Because,
F:
# of Ba atoms = coefficient 4 + subscript 1 = 5
This shows given formula contain 5 Ba atoms. So it is incorrect.
H:
# of Ba atoms = subscript 4 × coefficient 2 = 6
This shows that subscript is 4 which is incorrect because coefficient is 4 and subscript is 1.
j:
# of Ba atoms = subscript 1 + coefficient 1 = 2
This option shows that subscript is one which is correct but coefficient is incorrect. The coefficient of Ba is 4 and coefficient is always multiply with subscript not added. So this option is also incorrect.
how many moles are in a 4.2 gram gold sample
how many moles of h2 can be made from the complete reaction of 3.5 moles of al?
Given: 2Al+6HCL 2Alcl3+3h2
Answer:
From the given equation, we can see that for every 2 moles of Al, we get 3 moles of H2
So, we can say the the number of moles of H2 is 3/2 times the number of moles of Al
We are given the number of moles of Al and we have to find the number of moles of H2
We have deduced the relationship:
Moles of Al * 3 / 2 = Moles of H2
Replacing the variables with given values
3.5 * 3 / 2 = Moles of H2
Moles of H2 = 5.25 moles
Each molecule of an olefin has at least:
a
one double bond
b
two double bonds
c
three double bonds
d
two or more single bonds
Answer:
a.
Explanation:
One double bond.
For example ethene CH2=CH2
Which of the following substances will form a base when dissolved in water?
Question 14 options:
A)
HCl
B)
HBr
C)
KOH
D)
SO2
Answer:
Its D) SO2
Explanation
Did the test
How many atoms of Chlorine are in 1.00 mol of Chlorine gas?
6.022 x 10∧23
3.01 x 10∧23
6.022 x 10∧24
Answer:
6.02 × 10²³ atoms Cl₂
Explanation:
Avagadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Step 1: Define
1.00 mol Cl₂ (g)
Step 2: Use Dimensional Analysis
[tex]1.00 \hspace{3} mol \hspace{3} Cl_2(\frac{6.02(10)^23 \hspace{3} atoms \hspace{3} Cl_2}{1 \hspace{3} mol \hspace{3} Cl_2} )[/tex] = 6.02 × 10²³ atoms Cl₂
The smallest form of matter that still retains the properties of an element
Answer:
atom
Explanation:
the atom is the smallest form.
Based on the visible cell structure, which of the following statements is true?
Answer:I think it would be the third one.
Explanation:
How to separate given mixture?
Answer:
Chromatography involves solvent separation on a solid medium.
Distillation takes advantage of differences in boiling points.
Evaporation removes a liquid from a solution to leave a solid material.
Filtration separates solids of different sizes.
Explanation:
What are the two ways
that heat is measured?
Answer:
heat is mesured in calories and also joules
Explanation:
Elements with similar chemical properties are organized in the same
A.) Group
B.) Period
C.) Electron Shell
D.) Row
Answer:
electron shell is the answer
I need help with this
Answer:
2 nitrogen molecules are present
1 oxygen molecule is present
1 n2o molecules are present
If 5.00g of iron metal is reacted with 0.950g of Cl2 gas, how many grams of ferric chloride (FeCl3) will form?
Answer:
1.45g of FeCl3
Explanation:
The equation of the reaction is given as;
2Fe + 3Cl2 --> 2FeCl3
2 mol of Fe reracts with 3 mol of Cl2 to form 2 mol of FeCl3
Upon converting to mass using;
Mass = Number of moles * Molar mass
( 2 * 55.85 = 111.7g ) of Fe reacts with ( 3 * 71 = 213g ) of Cl2 to form ( 2 * 162.2 = 324.4g) of FeCl3
Cl2 is the limiting reactant as it determines how much of FeCl3 is formed
213g of Cl2 = 324.4g of FeCl3
0.950g of Cl2 = x
x = (0.950 * 324.4 ) / 213
x = 1.45g of FeCl3
Which of the following represents a species with 16 protons and 18 electrons? A) Ar B) S C) S²⁻ D) Si⁴⁻ E) S²⁺ Question 5 of 40
Answer:S²⁻
Explanation:
Sulphur is in group 16. The atomic number of sulphur is 16.
However, sulphur can accept two electrons to form the sulphide ion S²⁻ which contains 18 electrons, hence the answer provided above.