Plutonium-238 has a half life of 87.7 years. What percentage of a 5 kilogram (kg) sample remains after 50 years?
Answer:
i dont know but i should know try g o o g l e
Explanation:
A circular cylinder has a diameter of 3.0 cm and a mass of 25 g. It floats in water with its long axis perpendicular to the water's surface. It is pushed down into the water by a small distance and released; it then bobs up and down. Part A What is the oscillation frequency
Answer:
f = 5.3 Hz
Explanation:
To solve this problem, let's find the equation that describes the process, using Newton's second law
∑ F = ma
where the acceleration is
a = [tex]\frac{d^2 y}{dt^2 }[/tex]
B- W = m \frac{d^2 y}{dt^2 }
To solve this problem we create a change in the reference system, we place the zero at the equilibrium point
B = W
In this frame of reference, the variable y' when it is oscillating is positive and negative, therefore Newton's equation remains
B’= m [tex]\frac{d^2 y'}{dt^2 }[/tex]
the thrust is given by the Archimedes relation
B = ρ_liquid g V_liquid
the volume is
V = π r² y'
we substitute
- ρ_liquid g π r² y’ = m \frac{d^2 y'}{dt^2 }
[tex]\frac{d^2 y'}{dt^2} + \rho_liquid \ g \ \pi r^2/m ) y' \ =0[/tex]
this differential equation has a solution of type
y = A cos (wt + Ф)
where
w² = ρ_liquid g π r² /m
angular velocity and frequency are related
w = 2π f
we substitute
4π² f² = ρ_liquid g π r² / m
f = [tex]\frac{1}{2\pi } \ \sqrt{ \frac{ \rho_{liquid} \ \pi r^2 \ g}{m } }[/tex]
calculate
f = [tex]\frac{1}{2 \pi } \sqrt{ \frac{ 1000 \ \pi \ 0.03^2 \ 9.8 }{0.025} }[/tex]
f = 5.3 Hz
Which statement best describes work in the scientific sense?
O A. Work is the sum of the distances an object moves due to the
forces applied to it.
O B. Work is the number of tasks done in the amount of time needed to
complete them.
O C. Work is the ratio of the force acting on an object and the distance
the object travels.
O D. Work is the product of a force and the distance an object moves
because of the force.
Answer:
the answer is D I tought
has a man he has married many women but has never been married before who is he
Answer:
Explanation:
The answer is a priest or a moulana
A person, with his ear to the ground, sees a huge stone strike the concrete pavement. A moment later two sounds are heard from the impact: one travels in the air and the other in the concrete, and they are 6.4 s apart. Part A How far away did the impact occur? (Use vair=343m/s , vconcrete=3000m/s )
Answer:
The impact occured at a distance of 2478.585 meters from the person.
Explanation:
(After some research on web, we conclude that problem is not incomplete) The element "Part A" may lead to the false idea that question is incomplete. Correct form is presented below:
A person, with his ear to the ground, sees a huge stone strike the concrete pavement. A moment later two sounds are heard from the impact: one travels in the air and the other in the concrete, and they are 6.4 seconds apart. How far away did the impact occur? (Sound speed in the air: 343 meters per second, sound speed in concrete: 3000 meters per second)
Sound is a manifestation of mechanical waves, which needs a medium to propagate themselves. Depending on the material, sound will take more or less time to travel a given distance. From statement, we know this time difference between air and concrete ([tex]\Delta t[/tex]), in seconds:
[tex]\Delta t = t_{A}-t_{C}[/tex] (1)
Where:
[tex]t_{C}[/tex] - Time spent by the sound in concrete, in seconds.
[tex]t_{A}[/tex] - Time spent by the sound in the air, in seconds.
By suposing that sound travels the same distance and at constant speed in both materials, we have the following expression:
[tex]\Delta t = \frac{x}{v_{A}}-\frac{x}{v_{C}}[/tex]
[tex]\Delta t = x\cdot \left(\frac{1}{v_{A}}-\frac{1}{v_{C}} \right)[/tex]
[tex]x = \frac{\Delta t}{\frac{1}{v_{A}}-\frac{1}{v_{C}} }[/tex] (2)
Where:
[tex]v_{C}[/tex] - Speed of the sound in concrete, in meters per second.
[tex]v_{A}[/tex] - Speed of the sound in the air, in meters per second.
[tex]x[/tex] - Distance traveled by the sound, in meters.
If we know that [tex]\Delta t = 6.4\,s[/tex], [tex]v_{C} = 3000\,\frac{m}{s}[/tex] and [tex]v_{A} = 343\,\frac{m}{s}[/tex], then the distance travelled by the sound is:
[tex]x = \frac{\Delta t}{\frac{1}{v_{A}}-\frac{1}{v_{C}} }[/tex]
[tex]x = 2478.585\,m[/tex]
The impact occured at a distance of 2478.585 meters from the person.
A sound wave travels with a velocity of 1.5 m/s and has a frequency of 500 Hz. What is its wavelength?
1. Describe the following energy transformations for the following scenario:
A student plays piano in music class.
Answer:
Explanation:
iphotosynthesis 2coal burning 3electric motor 4 electricity generator 5 waterturbines 6 solar bulb
Lucy moves down the hall at 3.5 m/s. When he sees Luke coming, he slows down. After 4.0 s, he is moving at 2.1. m/s. What is his acceleration?
Answer:
Acceleration, a = 0.35 m/s²
Explanation:
Given the following data;
Initial velocity, u = 3.5 m/s²
Final velocity, v = 2.1 m/s²
Time, t = 4 secs
To find the acceleration, we would use the first equation of motion;
V = u - at (the sign is negative because Lucy is slowing down).
Substituting into the formula, we have;
2.1 = 3.5 - a(4)
2.1 = 3.5 - 4a
4a = 3.5 - 2.1
4a = 1.4
a = 1.4/4
a = 0.35 m/s²
describe briefly how you can a body
Answer:
what
you need to elaborate
Answer: Can you please write question clearly.
Explanation:
stored energy is _________ ___________
kinetic energy
energy in motion
potential energy
Answer:
Potential energy
Explanation:
Potential energy is stored energy
Which two options describe physical properties of matter
Do anyone answer this question
Answer:
B) 10^-2 cm/s
in term of meter. it is 10^-4 m/s
Explanation:
A 2:2 kg toy train is con ned to roll along a straight, frictionless track parallel to the x-axis. The train starts at the origin moving at a speed of 1:6m=s in the +x direction, and continues until it reaches a position 7:5m down the track from where it started. During its journey, it experiences a force pointing in the same direction as the vector 0:6 +0:8 , with magnitude initially 2:8N and decreasing linearly with its x-position to 0N when the train has finished its journey.
Required:
a. Calculate the work done by this force over the entire journey of the train.
b. Find the speed of the train at the end of its journey.
Answer:
a) 10.51 J
b) 3.48 m/s
Explanation:
Given data :
mass of train ( M ) = 2.2 kg
Given initial velocity ( u ) = 1.6 m/s
a) calculating work done by the force over the journey of the train
F = mx + b ------ ( 1 )
m = slope = ( Δ f / Δ x ) = 2.8 / -7.5 = - 0.373 N/m
x = distance travelled on the x axis by the train = 7.5 m
F = force experienced by the train = 2.8 N
x = 0
∴ b = 2.8
hence equation 1 can be written as
F = ( -0.373) x + 2.8 ----- ( 2 )
hence to determine the work done by the force
W = [tex]\int\limits^7_0 { ( -0.373) x + 2.8 )} \, dx[/tex] Note: the limits are actually 7.5 and 0
∴ W ( work done ) = -10.49 + 21 = 10.51 J
b) calculate the speed of the train at the end of its journey
we will apply the work energy theorem
W = 1/2 m*v^2 - 1/2 m*u^2
∴ V^2 = 2 / M ( W + 1/2 M*u^2 ) ( input values into equation )
V^2 = 12.11
hence V = 3.48 m/s
Model the Earth's atmosphere as 79% N2, 19% O2, and 2% Argon, all of which are in thermal equilibrium at 280 K. At what height is the density of O half its value at sea level
Answer:
[tex]9.495 \times 10^3\ m[/tex]
Explanation:
From the given information:
Using the equation of Barometric formula as related to density, we have:
[tex]\rho (z) = \rho (0) e^{(-\dfrac{z}{H})} \ \ \ \ --- (1)[/tex]
Here;
[tex]p(z) =[/tex] the gas density at altitude z
[tex]\rho(0) =[/tex] the gas density at sea level
H = height of the scale
[tex]H = \dfrac{RT}{M_ag } \ \ \ --- (2)[/tex]
Also;
R represent the gas constant
temperature (T) a= 280 K
g = gravity
[tex]M_a =[/tex] molaar mass of gas; here, the gas is Oxygen:
∴
[tex]M_a =[/tex] 15.99 g/mol
= 15.99 × 10⁻³ kg/mol
[tex]H = \dfrac{8.3144 \times 280}{15.99 \times 10^{-3} \times 9.8 }[/tex]
[tex]H =14856.43 \ m[/tex]
Now we need to figure out how far above sea level the density of oxygen drops to half of what it is at sea level.
This implies that we have to calculate z;
i.e. [tex]\rho(z) =\dfrac{\rho(0) }{(2)}[/tex]
By using the value of H and [tex]\rho(z)[/tex] from (1), we have:
[tex]\dfrac{\rho(0) }{(2)} = \rho (0) e^{(-\dfrac{z}{14856.43})}[/tex]
∴
[tex]\dfrac{1}{2} = e^{(-\dfrac{z}{14856.43})} \\ \\ e^{(-\dfrac{z}{14856.43})} =\dfrac{1}{2}[/tex]
By rearrangement and taking the logarithm of the above equation; we have:
[tex]- z = 14856.43 \times \mathtt{In}\dfrac{1}{2} \\ \\ -z = 14856.43 \times (-0.6391) \\ \\ z = 9495 \ m \\ \\ z = 9.495 \times 10^3\ m[/tex]
As a result, the oxygen density at [tex]9.495 \times 10^3\ m[/tex] is half of what it is at sea level.
The model shows the star Wolf 359, the sun, and Star X. It takes 7.8 years for light produced on Wolf 359 to reach the sun.
If Star X is 50 times as far from the sun as Wolf 359 is, how far is Star X from the sun, to the nearest light-year?
Answer:
390 light-years
Explanation:
50 x 7.8 =390
Scientists are constantly exploring the universe, looking for new planets that support life similar to the life on
Earth. A new planet that supports life would have all of the following characteristics except -
A. a gaseous atmosphere.
B. an orbiting moon.
C. liquid water.
D. protection from radiation.
A new planet that supports life would have all the following characteristics except an orbiting moon. Hence, option B is correct.
What is a Planet?An enormous, spherical celestial object known as a planet is neither a star nor its remains. The nebular hypothesis, which states how an interstellar cloud falls out of a nebula to produce a young protostar encircled by a protoplanetary disk, is now the best explanation for planet formation.
By gradually accumulating material under the influence of gravity, or accretion, planets develop in this disk.
The rocky planets Mercury, Venus, Earth, and Mars, as well as the giant planets Jupiter, Saturn, Uranus, and Neptune, make up the Solar System's minimum number of eight planets. These planets all revolve around axes that are inclined relative to their respective polar axes.
To know more about Planet:
https://brainly.com/question/14581221
#SPJ2
I am b o r e d, I am very very b o r e d!
I'm b o r e d with Lazarbeam Quarantine edition
episode 2352 because apparently the quarantining never ends :(
Q10. Refer to the Condon table to answer question
Second letter
UUU
UCU
UGU
OUC
UCO
UAC
Leu
UAA Btop UOA Stop
UCG UAG Stop UGOT
CU
CCU
CAU CGU
CUC
ССС
САС
Leu
CUA
CGC
Pro
CCA
CAA COA
CUG
CCG
AD
RoecoDoo Do
Asn
AUU
ACU
AUC File
ACC
AUA АСА
AUG Met ACO
AAU
ААС
ΑΛΛΑ
LANG
AGU
Ser
AGC
Thr
Jue AGA
Jara
AGG
sp
GU
QUC
GUA
GUG
GCU GAU
GCC
Ala
GAC
GCA GAA
OCG GAG
GOC
GGA
Jolu 900
Write the mRNA copy of this DNA CCG GA
GCT (original) | Imk]
Use the Condon table above to list all the amin
Answer:
so you have a question
Explanation:
either way, have a nice day
A thin uniform rod (length = 1.2 m, mass = 2.0 kg) is pivoted about a horizontal, frictionless pin through one end of the rod. (The moment of inertia of the rod about this axis is ML2/3.) The rod is released when it makes an angle of 37° with the horizontal. What is the angular acceleration of the rod at the instant it is released (in rad/s^2)?
Answer:
A: 9.8 rad/s2
B: 7.4 rad/s2
C: 8.4 rad/s2
D: 5.9 rad/s2
E: 6.5 rad/s2
I think the answer is A 9.8rad/s2
A community plans to build a facility to convert solar radiation to electrical power. The community requires 2.20 MW of power, and the system to be installed has an efficiency of 30.0% (that is, 30.0% of the solar energy incident on the surface is converted to useful energy that can power the community). Assuming sunlight has a constant intensity of 1 020 W/m2, what must be the effective area of a perfectly absorbing surface used in such an installation
Answer:
The answer is "[tex]\bold{7.18 \times 10^3 \ m^2}[/tex]".
Explanation:
The efficiency system:
[tex]\eta =\frac{P_{req}}{P} \times 10\\\\P =\frac{P_{req}}{\eta} \times 10\\\\[/tex]
[tex]=(\frac{2.20 \times 10^6 \ W}{30})\times 100\\\\=(\frac{220 \times 10^6 \ W}{30})\\\\=(\frac{22 \times 10^6 \ W}{3})\\\\=7.33 \times 10^6 \ W[/tex]
Using formula:
[tex]A=\frac{P}{I}[/tex]
Effective area:
[tex]A= \frac{7.33 \times 10^6 \ W}{1020\ \frac{W}{m^2}}\\\\[/tex]
[tex]=\frac{7.33 \times 10^6 }{1020}\ m^2 \\\\ =0.0071862 \times 10^6 \ m^2 \\\\=7.1862 \times 10^3 \ m^2 \\\\[/tex]
A rock falls from a cliff and hits the ground at a velocity of 31m/s. How long did it take to fall?
Answer:
i dont know man
Explanation:
i dont know man
Which macronutrient is made up of carbon and hydrogen elements joined together in long groups called hydrocarbons?
Proteins Magnesium Potassium Fats
Answer:
FATS
Explanation:
Fats are made up of carbon and hydrogen elements joined together in long groups called hydrocarbons. The simplest unit of fat is the fatty acid, of which there are two types: saturated and unsaturated.
The macronutrient which is made up of carbon and hydrogen elements joined together in long groups called hydrocarbons is: D. Fats.
A macronutrient refers to a very large molecule (structure) that comprises covalently bonded organic atoms (hydrocarbons) and smaller molecular structures (monomers).
In Science, macronutrients are grouped into four (4) main categories and these are;
Nucleic acid.Carbohydrates.Proteins.Fats (Lipids).Fats (Lipids) are macronutrients that are typically made up of both carbon and hydrogen elements, which are joined together in long groups referred to as hydrocarbons.
Find more information: https://brainly.com/question/14681125
Find the speed of a wave with a frequency of 18 Hz and a wavelength of 6 meters. Show work. WILL MARK BRAINLIEST IF CORRECT
Answer:
so i would say 11.4 i dont have work only this link
Explanation:
https://flexbooks.ck12.org/cbook/ck-12-physics-flexbook-2.0/section/11.4/primary/lesson/wave-speed-ms-ps
Two point charges, initially 3 cm apart, are moved to a distance of 1 cm apart. By what factor does the resulting electric force between them change?
A. 3
B. 1/9
C. 1/3
D. 9
In an elastic collision between a moving 10-kg mass and a stationary 10-kg mass half the momentum is transferred to the stationary mass. In this situation the total kinetic energy after the collision is less than it was before the collision. Where did the kinetic energy go?
A) The kinetic energy was destroyed during the collision.
B) Some of the kinetic energy was turned into momentum during the collision.
C) Some of the kinetic energy was turned into heat or used to deform the masses.
D) Some of the kinetic energy was turned into potential energy during the collision.
Answer: C
Explanation:
USAtestprep
Imagine you are on a space mission and you are 6 AU's from the Sun and you use a light sensor to measure the brightness of the Sun. The amount of sunlight received per square centimeter would be different by what factor compared to the same measurement on Earth at AU
Answer:
36 times less.
Explanation:
The distance from you to the sun is 6AU's, and from the sun to the earth is 1 AU.
Therefore,
At Earth sunlight received per unit cm² is:
[tex]I_{earth} = \dfrac{I_o}{4 \pi \times (1)^2}[/tex]
[tex]I_{earth} = \dfrac{I_o}{4 \pi}[/tex]
[tex]I_{me} =\dfrac{I}{4 \pi (6)^2}[/tex]
[tex]I_{me} = \dfrac{I_o}{36(4 \pi)}[/tex]
Thus, [tex]I_{earth} = 36 \times I_{me}[/tex]
Thus, the right answer is 36 times less.
Some thermometers contain alcohol. Alcohol is used in thermometers because
A. is soluble in water
B. is a clear gas when it evaporates
C. expands and contracts easily
D. has a high density
Answer:
Explanation:
Option C is the correct answer
Some thermometers contain alcohol. Alcohol is used in thermometers because expands and contracts easily. The correct option is C.
What is thermometer?Thermometer is the temperature measuring device which consists of a liquid in the bulb which expands as the temperature is increased.
The liquid metal used in the thermometer must have the property to respond on the hotness and coldness rapidly.
In place of mercury, some thermometers use alcohol because an alcohol has a very low freezing point as compared to the Mercury.
Thus, the correct option is C.
Learn more about thermometers.
https://brainly.com/question/24189042
#SPJ2
Some thermometers contain alcohol. Alcohol is used in thermometers because expands and contracts easily.
A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surface of the water. It takes a time of 2.00 s for the boat to travel from its highest point to its lowest, a total distance of 0.600 m . The fisherman sees that the wave crests are spaced a horizontal distance of 6.40 m apart.
Required:
a. How fast are the waves traveling?
b. What is the amplitude of each wave?
c. If the total vertical distance traveled by the boat were 0.30 m but the other data remained the same, how would the answers to parts (a) and (b) be affected?
Answer:
a. Speed = 1.6 m/s
b. Amplitude = 0.3 m
c. Speed = 1.6 m/s
Amplitude = 0.15 m
Explanation:
a.
The frequency of the wave must be equal to the reciprocal of the time taken by the boat to move from the highest point to the highest point again. This time will be twice the value of the time taken to travel from the highest point to the lowest point:
frequency = [tex]\frac{1}{2(2\ s)}[/tex] = 0.25 Hz
The wavelength of the wave is the distance between consecutive crests of wave. Therefore,
Wavelength = 6.4 m
Now, the speed of the wave is given as:
Speed = (Frequency)(Wavelength)
Speed = (0.25 Hz)(6.4 m)
Speed = 1.6 m/s
b.
Amplitude is the distance between the mean position of the wave and the extreme position. Hence, it will be half the distance between the highest and lowest point:
Amplitude = (0.5)(0.6 m)
Amplitude = 0.3 m
c.
frequency = [tex]\frac{1}{2(2\ s)}[/tex] = 0.25 Hz
Speed = (Frequency)(Wavelength)
Speed = (0.25 Hz)(6.4 m)
Speed = 1.6 m/s
Amplitude = (0.5)(0.3 m)
Amplitude = 0.15 m
2. A 4kg object possesses 18J of Kinetic energy. What is the velocity?
Plz help I’ll give you points!
NASA’s Tracking and Data Relay Satellite (TDRS) System constellation resides at geosynchronous orbit (35,000km) altitude. If a technician at the Goddard Spaceflight Center in Maryland initiates a transmission to the Johnson Spaceflight Center in Houston over TDRS, how long will it be until JSC detects the transmission (one-way latency)? You may assume there is negligible processing delay on the satellite, and that c = 3x108 m/sec.
Answer:
35,000 km = 35,000,000 m = 3.5 E107 m
t = S / v = 3.5 * 10E7 / 3.0 E10E8 = .117 sec