Answer:
the acceleration is negative which means it is going in the opposite direction of the actual motion which concludes the reason why the ball is slowing down. However, when the ball is stopped, there is no acceleration as the ball is in equilibrium
Explanation:
A rock is dropped (from rest) off a bridge over the Merrimack River. The falling rock
accelerates at 10 m/s2 downward. If it takes 2.5 seconds before a splash is heard,
approximately how high is the bridge?
Answer:
31.25 meters or ~31 meters approximately
Explanation:
Let's see which of the 5 variables we are given since this is a constant acceleration problem.
[tex]v_i \ \ \ \ \ \ t \\ v_f \ \ \ \ \ \triangle x \\ a[/tex]We want to find the height of the bridge, aka the vertical displacement of the rock. Let's set the upwards direction to be positive and the downwards direction to be negative.
We are told that the acceleration is 10 m/s² downward, so we have a = -10 m/s².
We are also told that the time it takes the rock to hit the water is 2.5 seconds. Time is the same regardless of the x- or y- direction, so we can say that t = 2.5 seconds.
Now, we aren't told this directly, but we can figure out that the velocity in the y-direction is 0 m/s, since the rock is dropped from rest off the bridge. Therefore, [tex]v_i=0 \frac{m}{s}[/tex].
We want to find the vertical displacement, the height of the bridge, so we can say that [tex]\triangle x= \ ?[/tex]
We have 4 out of 5 variables:
[tex]v_i,\ a, \ t, \ \triangle x[/tex]Look through the constant acceleration equations to see which equation has all 4 of these variables. You should come up with this one (no final velocity):
[tex]x_f=x_i+v_it+\frac{1}{2}at^2[/tex]Subtract [tex]x_i[/tex] from both sides of the equation to get:
[tex]\triangle x=v_it+\frac{1}{2}at^2[/tex]Substitute in our known variables and solve for delta x.
[tex]\triangle x=(0\frac{m}{s})(2.5s) + \frac{1}{2} (-10\frac{m}{s^2})(2.5s)^2[/tex]0 m/s multiplied by 2.5 s is 0, so we have:
[tex]\triangle x =\frac{1}{2} (-10)(2.5)^2[/tex]Evaluate the exponent first and multiply the terms together.
[tex]\triangle x =(-5)(6.25)[/tex] [tex]\triangle x =-31.25[/tex]The vertical displacement is -31.25 meters from the rock's starting position, so we can say that the height of the bridge is 31.25 meters, which is approximately 31 meters tall.
Answer:
31 meters
hope it help you
thanks for free points.........
If we drop two iron balls, one ball is bigger than another one, from
same height which will fall first to ground? Explain why.
Answer:
The bigger one. Ignoring air resistance, they will fall at the same speed, but the bigger one will hit first because it sticks out lower.
Explanation:
How to get the radius from the circumference?
Answer:
The equation Pi = c/2r means that Pi (r) = c/2, so r = c / (2 Pi). The radius of a circle is therefore equal to c / (2 Pi), where c is the circumference of the circle.
Explanation:
If it takes Charlie .45 hrs walking at 2.5 km/hr to get to the chocolate factory and it takes Willy Wonka 25 hrs walking at 3.5 km/hr then who lives closer and by how far?
Answer:
6.4
Explanation:
trust
At a picnic, there is a contest in which hoses are used to shoot water at a beach ball from three different directions. As a result, three forces act on the ball, F1, F2, and F3. The magnitudes of F1 and F2 are F1=50.0N and F2=90.0N. F1 acts under the angle of 60degrees with respect to the x axis and F2 is directed along the x-axis. Find the magnitude and direction of F3 such that the resultant force acting on the ball is zero.
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
F₃ = 122.88 N
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
θ₃ = 20.63°
Can anyone know what is UV rays
Answer:
I know this need u in online class LOL
Explanation:
Ultraviolet is a form of electromagnetic radiation with wavelength from 10 to 400 nm, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun.
A grapefruit falls from a tree and hits the ground 0.72 s later.
How far did the grapefruit drop?
What was its speed when it hit the ground?
Answer:
The grapefruit dropped 2.54 m and hit the ground at 7.06 m/s
Explanation:
Free Fall Motion
A free-falling object falls under the sole influence of gravity. Any object that is being acted upon only by the force of gravity is said to be in a state of free fall. Free-falling objects do not encounter air resistance.
If an object is dropped from rest in a free-falling motion, it falls with a constant acceleration called the acceleration of gravity, which value is [tex]g = 9.8 m/s^2.[/tex]
The final velocity of a free-falling object after a time t is given by:
vf=g.t
The distance traveled by a dropped object is:
[tex]\displaystyle y=\frac{gt^2}{2}[/tex]
Given a grapefruit free falls from a tree and hits the ground t=0.72 s later, we can calculate the height it fell from:
[tex]\displaystyle y=\frac{9.8\cdot 0.72^2}{2}[/tex]
y = 2.54 m
The final speed is computed below:
[tex]vf=9.8\cdot 0.72[/tex]
vf = 7.06 m/s
The grapefruit dropped 2.54 m and hit the ground at 7.06 m/s
differentiate among the various forms of energy
Explanation:
Forms of energy
There are many different types of energy, which all fall into two primary forms – kinetic and potential. Energy can transform from one type to another, but it can never be destroyed or created.
Burning Questions
What are the different types of energy?
Types of energy can be categorised into two broad categories – kinetic energy (the energy of moving objects) and potential energy (energy that is stored). These are the two basic forms of energy. The different types of energy include thermal energy, radiant energy, chemical energy, nuclear energy, electrical energy, motion energy, sound energy, elastic energy and gravitational energy.
Discover the different types of energy
Thermal Energy
Thermal (Heat) Energy
Thermal energy is created from the vibration of atoms and molecules within substances. The faster they move, the more energy they possess and the hotter they become. Thermal energy is also called heat energy.
Let's go! >
Chemical Energy
Chemical Energy
Chemical energy is stored in the bonds of atoms and molecules – it is the energy that holds these particles together. Stored chemical energy is found in food, biomass, petroleum, and natural gas.
Let's go! >
Nuclear Energy
Nuclear Energy
Nuclear energy is stored in the nucleus of atoms. This energy is released when the nuclei are combined (fusion) or split apart (fission). Nuclear power plants split the nuclei of uranium atoms to produce electricity.
Let's go! >
Electrical Energy
Electrical Energy
Electrical energy is the movement of electrons (the tiny particles that makeup atoms, along with protons and neutrons). Electrons that move through a wire are called electricity. Lightning is another example of electrical energy.
Let's go! >
Radiant Energy
Radiant Energy
Also known as light energy or electromagnetic energy, radiant energy is a type of kinetic energy that travels in waves. Examples include the energy from the sun, x-rays, and radio waves.
Let's go! >
light Energy
Light Energy
Light energy is a form of electromagnetic radiation. Light consists of photons, which are produced when an object's atoms heat up. Light travels in waves and is the only form of energy visible to the human eye.
Let's go! >
Motion Energy
Motion Energy
Motion energy – or mechanical energy – is the energy stored in objects; as objects move faster, more energy is stored. Examples of motion energy include wind, a flowing river, a moving car, or a person running.
Let's go! >
Sound Energy
Sound Energy
Sound energy is the movement of energy through substances. It moves in waves and is produced when a force makes an object or substance vibrate. There is usually much less energy in sound than in other forms of energy.
Let's go! >
Elastic Energy
Elastic Energy
Elastic energy is a form of potential energy that is stored in an elastic object - such as a coiled spring or a stretched elastic band. Elastic objects store elastic energy when a force causes them to be stretched or squashed.
Let's go! >
Gravitational Energy
Gravitational Energy
Gravitational energy is a form of potential energy. It is an energy associated with gravity or gravitational force – in other words, the energy held by an object when it is in a high position compared to a lower position.
Let's go! >
What is the Law of Conservation of Energy?
While it might sound complex, the First Law of Conservation of energy simply states that energy can never be created or destroyed, but it can be transformed from one type to another.
What Do You Mean?
Types of Energy Diagram
Energy can be transformed from one form to another in different ways.
Kinetic energy is the energy of a moving object.
Potential energy is energy that is stored in an object or substance.
The Law of Conservation of energy is that energy can be transformed from one form to another, but can be neither created or destroyed.
Energy Transformations see diagram…
Notice that these energy transfer examples only show the useful energy transfers. However, car engines are also noisy (sound energy) and hot (thermal energy) and electric lamps also give out heat energy.
Cool Facts
The use of the word 'energy' dates all the way back to the 4th century BC.
Cool Facts
The word energy comes from the Greek word 'energeia', meaning 'activity.
Cool Facts
The use of the word 'energy' dates all the way back to the 4th century BC.
Cool Facts
The word energy comes from the Greek word 'energeia', meaning 'activity.
Speedy Summary
Energy transferred
Sunlight energy is converted into the chemical energy of glucose.
Energy comes in many different types, which can be categorised into two basic forms – kinetic and potential. Energy can never be created or destroyed, but it can be transformed from one type of energy to another.
Explanation:
jdkkevfdjkrvvgskcehfdgjkjfdgjjcbbxgjggrruoohgfdrhgh
A machine gun with a mass of 5kg fires a 50g bullet at a speed of 100m/s calculate the recoil speed of the machine gun
Answer:
Explanation:
Convert mass of bullet 50g in kg
✯ Divide 50 by 1000
⟹ 50/1000
∴ 0.05 kg
what is the equation that links power, energy and time?
Answer:
Energy = Power x Time
Explanation:
A car is driving down the road at 35 m/s when the driver slams on the brakes. The car stops in a distance of 75 meters. The braking force necessary to do this is 9,800 Newtons. How much work do the brakes perform stopping the car?
Answer:
If the car is initially travelling at u m/s, then the stopping distance d m travelled by ... the speed of the car at the instant the brakes are applied. ... Common usage will force us to depart from this later in the notes. ... The history of these equations is not absolutely clear, but we do have some ... Newton (1642–1727) and Leibniz.
Explanation:
hope this helped
Please help!! Tell me the explanation!
Answer:
it will sink
Explanation:
because it is a higher density than water which is 1.0gm/cm^3
a ball is rolling ar 4.80m/s over level ground when it encounters a ramp which gives it an acceleration of -0.875m/s^{2. if the ramp is 0.750m long, what is the final velocity of the ball when it reaches the top of the ramp?
Answer:
4.66m/s
Explanation:
Given parameters:
Initial velocity = 4.8m/s
Acceleration = -0875m/s²
Length of the ramp = 0.75m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we apply the right motion equation;
V² = U² + 2aS
V is the final velocity
U is the initial velocity
a is the acceleration
S is the distance = length of ramp
Insert the parameters;
V² = 4.8² + 2(-0.875)0.75
V² = 23.04 - 1.31
V² = 21.73
V = √21.73 = 4.66m/s
What distance was covered in the 1st 2 seconds?
A.0 m B. 4m
C. 2m C. 8m
Answer:
E
Explanation:
Elaphants and noodles+ramen and sushi
State one way to decrease the moment of a given force about a given axis of rotation.
Answer:
The moment of a given force about a given axis of rotation can be decreased by decreasing the perpendicular distance of force from the axis of rotation.
Answer:
hope it helps...
Explanation:
The moment of a given force about a given axis of rotation can be decreased by decreasing the perpendicular distance of force from the axis of rotation.
what is displacement and distance
Answer:
Displacement is how far you are between your initial and finishing position.
Distance is how far you went.
Explanation:
For example, using a baseball field... if the sides are each 100 m..
A batter runs to third base... what is his displacement and distance?
Since the batter ran to 3rd base, it means he ran 300 m to get to 3rd base but his displacement is 100 m becuase that's how far they are from home plate. (which was their starting position)
So the answer to my example above would be:
Distance: 300 m
Displacement: 100 m
I hope this helped you.
Guys plz help answer this!!1
Answer:
its false for sure, its water that becomes to glucose
Scientists often use models to study the movement of continents. Why might scientists use a model to show this movement? A. Extremely fast movement is not easily observed directly. B. Extremely slow movement is not easily observed directly. C. Extremely complex movement is not easily observed directly. D. Extremely dangerous movement is not easily observed directly.
Answer: the answer is B. Extremely slow movement is not easily observed directly.
Extremely slow movement is not easily observed directly.
What are Continents?One of Earth's seven major landform divisions is the continent. The continents are Asia, Africa, North America, South America, Antarctica, Europe, and Australia, in order of largest to smallest.
Geographers typically include all the islands connected to a continent when identifying it. For instance, Japan is a country that belongs to Asia. Normally, all of the Caribbean Sea islands and Greenland are regarded as being in North America.
The combined area of the continents is roughly 148 million square kilometers (57 million square miles). Most of Earth's land surface, but not all of it, is made up of continents. Islands that are not physically a part of continents make up a minuscule amount of the overall land area.
Therefore, Extremely slow movement is not easily observed directly.
To learn more about Continents, refer to the link:
https://brainly.com/question/949445
#SPJ5
if a gas produced, most likely a ______ reaction took place
Answer:
if a gas produced, most likely a chemical reaction took place
Explanation:
Answer:
if a gas produced, most likely a Chemical reaction took place
Explanation:
hope this helps and have a good day <3
Which material rises from cracks in oceanic crust?
Answer:
trenchs and magma
Explanation:
Answer: Ridges form along cracks (divergent boundaries) in the oceanic crust (Molten rock (magma) rises through these cracks and pushes to both sides. When it cools, it forms new oceanic crust. The old crust is pushed away and new crust takes over. This is called Sea-Floor Spreading.
Please help me with this, I will mark as Brianalist if right...
Explanation:
To me, it's option 1
Newton third law states that Every action produces an equal and opposite reaction. Hence, given the fact that the engine is on, it should be producing a constant force every time so, the speed should be constant as the force propelling it is the same
The average mass of a car in the US is 1.440 x 10^6 g. Express this mass in kg.
Answer:
Average mass of acar in the US (in kg) = 1440 kg
Explanation:
Average mass of a car in the US (in g) = 1.440 × 10⁶ g
Mass in kg:
[tex] \rm 1 \: g = {10}^{ - 3} \: kg \\ \\ \rm 1.440 \times 10^6 \ g = 1.440 \times 10^6 \times {10}^{ - 3} \ kg \\ \\ \rm = 1.440 \times 10^{6 - 3} \ kg \\ \\ \rm = 1.440 \times 10^3 \ kg \\ \\ \rm = 1.440 \times 1000 \ kg \\ \\ \rm = 1440 \ kg[/tex]
distinguish between uniform and non uniform velocity??
Answer:
UNIFORM VELOCITY :body is said to have uniform velocity if it covers equal distance in equal intervals of time in a particular direction, however, the time intervals may be small. ... Examples of the body moving with variable
Explanation:
NON UNIFORM VELOCITYWhen an object covers unequal distances in equal intervals of time in a specified direction, or if the direction of motion changes, it is said to be moving with a non-uniform or variable velocity. e.g., revolving fan at a constant speed has variable velocity.
1. Explain how this picture is an example of kinetic energy.
2. What factors affect the energy of the ball?
3. What change could be made to give the ball more energy?
Answer:
1. when in motion(moving) it is Kinetic energy
2. it is kinetic when moving and potential when at rest
3. by constantly kicking or moving the ball
Explanation:
When we describe both the speed and direction of motion, we are
descriting its acceleration.
True
False
Answer:
True
Explanation:
Use the following v-t graph to answer the next questions
5
B
Velocity )
neters/second(s)
4
A
3
2
1
Time (1)
0
1
2
3
4
5
2
8
10
11
12
13
1015
16
second(s)
.1
D
-2
C С
3
5
uwuwwwwwwwuuwuwuwuwuwwuwuwyuwuwuwwu
Which refers to the ratio of output work to input work of a machine expressed as a percent?
total work
wattage
efficiency
power
Answer: C.) Efficiency
Explanation: Edge 2020 good luck ^__^
Select all the correct answers.
Which situations describe an elastic collision?
(A) Two glass marbles bounce off each other.
(B) Rodrick flops onto his sofa and sinks into the cushion.
(C) A tossed water balloon flattens when it lands on the grass.
D) A bowling ball knocks over five pins.
PLSSSS HELPPP What effects do mutations have? Check all that apply.
A) could change protein shape
B)never change protein shape
C)might be neutral
D)always change the way a trait is observed
E)might be harmful
F)might be beneficial
Answer:
E, F, A, C
Explanation:
They cannot change the way a trait is observed
Mutations could change protein shape(A), could cause genetic disorders and harm you(E), could actually be beneficial and cause adaptations to your environment(F), or they could be neutral in which no changes are observantly notable(C).
Hope this helps
The UFP and LFP of a faulty Thermometer are 110 deg. C and -5 deg. C respectively. If this thermometer is used to measure the temperature of the liquid whose actual temperature is 50 deg. C, reading on the thermometer will be:
62.5 deg. C
57.5 deg. C
52.5 deg. C
42.5 deg. C